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Performance Improvement of MOS type FDIS using Fuzzy Logic

Ji-Su Ryu. Tas-Geon Park. Kee-Sang Lee
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Abstract - A passive approach for enhancing fault
detection and isolation performance of multiple
observer based fault detection isolation schemes(FDIS)
is proposed. The FDIS has a hierarchical framework
to perform detection and isolation of faults of interest,
and diagnosis of process faults. The decision unit
comprises of a rule base and fuzzy inference engine
and removes some difficulties of conventional decision
unit which includes crisp logic and threshold values.
Emphasis is placed on the design and evaluation
methods of the diagnostic rule base. The suggested
scheme is applied for the FDIS design for a DC
motor driven centrifugal pump system.

1. Introduction
Automated large scale systems are characterized by

an increase in desired level of system reliability. And
achievement of the desired reliability becomes more

difficult than - ever. Among various methods to

enhance system reliability, fault detection and isolation
schemes(FDIS) can be considered to be the most
promising. FDIS can be classified into many cate-
gories according to the type of process model, the
method of residual generation and the diagnostic
algorithm adopted in the scheme. According to the
type of process model, the FDIS can be classified into
the following groups:

(a) Analytic Redundancy Method (ARM) [1]{2]

(b) Rule (Knowledge) based approaches [3)

{(c) Techniques based on the data structure [4]
In the ARM group, there are two typical approaches:
a) state estimation based and b) parameter estimation
based [1][5]. Although more attention has been paid to
the observer approach than to the parameter
estimation approach, the practical applicability of the
scheme is very restrictive due to following well-
known reasons. First, observer schemes require an
exact mathematical model of the process to be
diagnosed. Second, the FDI schemes fail to provide
reasonable decisions when some uncertainties, such as
unmodelled dynamics, or unknown external distur-
bances are introduced. Two major approaches, active
and passive, have been developed to remove these
difficulties. The active approach is to design a
residual generator which is insensitive to modelling
errors and disturbances while sensitive to the fault of
interest.[6] The passive approach includes the use of
adaptive thresholds and the design of more reliable
decision logic unit using artificial intelligence tools
such as fuzzy logic and artificial neural networks[7],
and the approach is useful whenever the robust

design of the residual generator is impossible.

In this paper, a new concept of decision logic
design for MOS is suggested. The decision logic unit
has a hierarchical framework to perform fault
detection, isolation of faults, failed sensor identi-
fication, and diagnosis of process faults. The proposed
scheme employs a fuzzy rule base and fuzzy inference
engine and doesn’t require threshold values. One of
important contribution of this paper is the suggestion
of the design and evaluation method of the diagnostic
rule base. The design concepts are applied to the
design of a multiple observer based FDIS for a DC
motor driven centrifugal pump system.

2. Residual Generation
for MOS type FDIS

The residuals contain the information that will be
used directly for fault detection and diagnosis. The
quality of the information carried by the residuals
influences the diagnostic performance. In order to
define and explain the residuals, we consider the
dedicated  observer scheme(DOS) in which conven-
tional observer theory is adopted. we also assume a
linear process model for brevity.

W = Ax()+ Bl +DA1) 1)
y{d) = Cx(D+ERD ,i=1,2,..¢

where AY) is fault vector. Assume that the system is
observable from each measurement y,. Then p
dedicated observers can be constructed in the
following form:

¥ =(A-Lcp R+ Lo + Bu @
3F = cx (i,k=1,2...)

Residuals can be defined in various ways since the
dedicated observer bank provides redundant informa-
tion. Two typical residuals are defined as

Ry=y;— 9. i k=1,2,-¢ 3)
REM=| %= 2! .G=12,..n:ik=12,..0 (4
(i+4)

where %/ is the estimate of x; from the jth
observer. Some function of residuals may be chosen
as the condition variables. In order to design more
reliable decision rules, following residuals are defined.
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RT; = 3, RE? ®)

where RTj gives the total difference between the
estimated vectors provided by the i th observer and
the £ th observer. The total number of residuals RTj
is limited to p(p-1)/2.

3. Design and evaluation criterion
for the rule-base

3.1 Decision rules for sensor faults

Once the condition variables were selected, detection
isolation rule-base is readily obtained in general.

Detection and Localization Rules:

If(RT12=PO or RTx»=PO or ... or Ru=PO), Then fault
If(RT12=PO & RT%=PO & ... & RTm=PO),

Then process fault

Otherwise, sensor fault

Rules for identification of a failed sensor:

The residuals RTj can also be employed for the
identification of a failed sensor. The identification
rules are obtained in a logical way. Let us assume an
ith sensor fault. Then, the residuals RTiy and RTw
have non-zero values, while other residuals have zero
values.

Rule 1 : If(RTi2,RTa,.....RTp)=(PO,AZ AZ,.... PO),
Then sensor 1 fault

Rule p @ If(RT12,RTx,.....RTm)=(AZ,....,AZ PO,PO),
Then sensor p fault

Unfortunately, there is no logical way to design
rule-base for process fault detection. An evaluation
criterion which helps the design of rule-base based on
the analysis of fault data, is described in next
subsection.

3.2 Evaluation criterion for the rule-base design

The rule-base is at the core of the proposed FDIS
and determines the performance of the FDIS. To
design an effective rule-base and an inference engine,
the following design procedure can be employed.

Step 1! Fault data collection and analysis

Step 3: Add expert and theoretic knowledge

Step 4: Select condition variables in the rules

Step 5. Build fuzzy-subsets for the selected
variables

Step 6: Select fuzzy composition operator

In all MOSs, observers provides excessive redun-
dant information, and there is some degree of freedom
in the selection of condition variables, which leads to
different rule-bases. So, we need a criterion by which
the quality of the linguistic rule-base can be
evaluated. To suggest an evaluation criterion, let us
make following definitions.

Définition 1. [Distance between two terms] :

For a fuzzy variable X with term set or linguistic
values [v, vy .... v,] the distance between two
terms is defined as

dy(v; ,v)=|1—j1 (6)
Definition 2. [Distance between two rules] :

Consider two rules with same condition variables
[ %1 %, .... x, lwhere each fuzzy variable, x, has

term set
rules.

[ vy vg - v,]. Assume following two

Rule it If (x, is 0) A (x2 s 2d N . (2, 5 v,), Fault i
Rule j: If (x; is o) A (x2 s ) A . (x, is v, Fault j

The distance between two rules is defined as:
ny: z%dX‘(UH,Vk,‘) (7)

The distance is a measure of distinguishability of two
faults, Fault'i and Fault j, when two rules, Rule i and
Rule j, are employed.

Definition 3. [Score of a rule}:

The score of the Rule i in a rule-base is defined as
the sum of the distances from Rule i to each other
rule:

S;=2.D; , j*1 )

7

Definition 4. [ Score of a rule-base }:

The score of a rule-base is defined as the sum of all
the distances between every two rules in the
rule-base.

SRBk = ZZD,‘, (9)

The distance and the score have following properties.

@ The addition of a significant condition variable
increases the distance between a rule pair and
the score of the rule-base. and the converse is
also true.

@ High score implies improved distinguishability and
Jow score means conflict.

@ Distance between terms is defined for a vanable,
not for different variables.

Quality of a rule-base is a relative concept, so the
evaluation of a given rule-base is performed as
follows:

Step 1. For every rule pair, calculate the distances
D, for all i and j.
Step 2. For every rule, calculate the score of the rule

Step 3. Calculate the score of the kth rule-base Sgs,.
Step 4. Compare S, , Sgs, Wwith those of .other rule-
base that is obtained from the same data.

For illustration, consider the following two
rule-bases in table 1 that are built from a set of fault
data. Our problem is to determine which rule-base is
better. It is assumed that the premises in each rule
are connected with 'and’ operator.

Evaluation of those rule-bases starts by calculating
distance D,. Let us assume that the term set of each
residual is chosen as {NB, NS, AZ, PS, PB}. Two
distance Maps in table 2 are generated.

Table 1. Rule-Base[l] Rule-Base[2]

Rule NO. | Ri2 | R | Raz | Riz | Raa | Rm } Fault NO.—'
1 AZ | PS NB NS | AZ | PS 1
2 AZ | NS PB PS | AZ | NS 2
3 NS | PB PB AZ | AZ | PB 3
4 PS | NB | NB AZ | AZ | NB 4
5 PS | PB PB AZ | PB | PB 5
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Table 2. Distance maps for rule-base 1 and 2
Rule~Base[1] Rule~Base[2]

Rule Rule

NO. 2 3 4 5 NO. 2 3 4 5
1 6 8 4 6 1 4 2 4 4
2 X 4 6 4 2 X 4 2 4
3 X X 10 3 3 X X 4 2
4 X X % 8 4 x X X 6

If ‘there is a zero entry, it means that the
corresponding two faults cannot be isolated. In such
cases, the condition variables must be changed or
added to produce nonzerc distances. If there is no
zero -entry, find the score of the rule-base. In this
example, the score of the rule-base 1 is 57, and that
of rule-base 2 is 36. So, it can be concluded that
rule-base 1 is superior to rule-base 2 in their
diagnostic ability.

In rule-base 2, there may be some conflicts
between Fault 1 and 3, Fault 2 and 4, and Fault 3
and 5, since they got the minimum score. rule-base 1
reduces the number and the degree of expected
conflicts. It is noteworthy that the evaluation criterion
indicates the diagnostic ability of the given rule-base,
provides an useful selection criterion of condition
variables and the degree of usefulness of each
condition variable,

4. An application to a DC motor driven
pump system

4.1 A motor-pump system

The proposed FDIS is applied to a DC motor driven
centrifugal pump system. Such motor-pump systems
are widely used for the transportation of all kinds of
liguids. The state variables and the measurement
outputs are defined as

xT=[41,(t) 2w(t) aM(1)] (10)

where x, is the armature current of the motor, x, is
the angular velocity of the motor-pump shaft, and =x,

is the mass flow rate of the fluid. The linear model
is taken from [8]. In Table 3, the relations between
the faults and the corresponding process
parameter variations are defined. These relations
are taken from Isermann [9].

Table 3. Faults and paramemter variations
Faultl:brush fault

>Armature Resistance increase.

> Armature Resistance (Ra)

Fault2: Short circuit -of decrease,
armature coil. >Armature Inductance (La)
decrease.

Fault3: Excess of lubrication|> Adhesive Friction (Cf) decrease.
oil on ball-bearing. >Pump Torque (Kp) decrease.

> Adhesive Friction (Cf) increase,

Fault4: Dirt on ball-bearing. >Pump Torque (Kp) decrease.

>Fluid Resistances (Ar) increase,
FaultS:lmpeller degradation |>Pump Cha. coef (Hp) decrease,
>Pump-Terque-coef(Kp) decrease.

4.2 Rule-Base of the FDIS

The rule-base includes; a rule-base for sensor
faults, a rule-base for process faults, and the rules for
localizing sensor fault and process fault. Detection
itself is very simple because any non-zero RT
indicates a fault. Rule sets for isolation of sensor
faults and process faults are obtained separately and
combined together to form a complete rule-base given

in table 4.. Because of the large number of faults to
be detected and isolated, residual Rgs, together with
RTi . are chosen to form the rule-base.

Table 4. A rule-base for Hierarchical FDIS

IF{RT)2= PO or RTz= PO or RTy =10}, THEN fault

RS1: JF{JRal RT12.RT22.RTas) = (PB.PM.AZ.PM), Then SF1

RS2: IF(iRn RT12.RT23.RT5) = (AZ,PB.PB.AZ). Then SF2

RS83: 1F(IRy 1 RT12.RT2. RTa) = (AZ.AZ, PM.PM), Then 8F3

RP : if({Ra:}.RTi2.RT2s.RTs:) = (PS.PM.PM.PS) OR
(PB.AZ. PM, PM). Then Process faull

RP1: IF(Ri2.Rz3.Rm) ={ NS.AZ.PS }. Then PF }

RP2: IF(Ry2.R25.Ru) =( PS.AZ XS ). Then PF 2

RP3: WP (Riz.Roa Ry = AZ.AZ.PB ). Then PF 3

RP4: IF(Ri2.Rea.Ra1) ={ AZ.AZ.NB }. Then PF 4

RP5: JF(Riz.Rzs.Ry) =( AZ.PB.FB j. Then PF &

Detection
Failed sensor
Identification
&
isolation of
sensor fault/
process faull

Process fault
Diagnosis

4.3 Simulation study
Three observers with the eigenvalues {(-60, -50,-40)
are designed for residual generation and fuzzy subsets
of each selected condition variables are defined as
shown in Tabie 5.

Table 5. Linguistic values and membership functions

Res Linguistic Values and Membership Functions

Ruz NB(-3.7 -0.3], NS[-1.4 -0.3 0.0), AZ(-0.05 0 0.05).
PS(0.0 0.3 1.4), PB[0.3 3.7)

Rzs | NM(-0.42 -0.1). AZ[-0.2 0 0.2}, PMI[0.1 0.42)

Rai, |{NB(-2.3 -0.05), NS[-1.0 -0.15 0], AZ[-0.15 0 0.15),

PS{0.0 0.15 1.0}, PB{0.05 2.3) )

|Ra1! 1{ AZ[0.0 0.15]. PS{ 0.0 0.15 1.0). PB[0.05 2.3})

RT:2 | AZ10.0 2.0]. PM(0.3 2.7 22.0) . PB(2.7 35.0)

RTz | AZ[0.0 1.2), PMI0.1 2.5 10 18], PB[2.5 31.0)

RTo: AZ(0.0 0.15]. PS(0.05 0.45 1.45). PM{0.1 2.0 7.5).
PB{1.0 11.0)

One-sided and two-sided triangular membership
functions and trapzoidal form membership function are
employed. They are distinguished by the number of
representative points. The notation '(’ or '} represent
the open-tail membership function which has
membership value ‘1’ for all input values 'smaller’ or
‘larger’ than the number specified as left argument or
right argument. Mamdani’'s Max-Min operator is
employed for the fuzzy inference.

In the simulation, an input Ju=10[V] is applied to
the motor-pump- system. The pump coefficient (Hp) is
varied from 95 percent to 105 percent of its nominal
value to verify the robust property of the FDIS
against parameter variations. It is assumed that the
variation is represented by the  equation,
Hp=Hp (1+0.05sin(1009)) where Hp, is nominal
parameter value, and that each fault occurs at 20
second. Tables 6. shows the diagnostic results in
grade of membership{a time average) for a 5% fault.

Table 6. Diagnostic performance for 5% faults

Fault Dfnectxon Membership Competition{Max-membership}
Time Value

PF 1 20,57 0.22 NO

PF 2 20.72 .25 NO

PF 3 21.24 0.22 PP} (0.02)

PF 4 21.27 0.23 PF2 (0.02)

PF 5 21.36 0.20 PF3 (0.09)

SF 1 21.52 0.0% NO

SF 2 21.08 0.28 NO

SF 3 20.46 0.08 NO

The detection time is defined as the time instant that
the membership grade of the fault exceeds the a-cut
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level which is selected as 0.03 in all simulations. The
membership value which is the output of the inference
engine of the FDI subsystem, usually means the
possibility of the fault and the compatibility of the
observed data with the premise of corresponding rule.
An important aspect of the proposed FDI subsystem
is that the scheme allows the competition among all
possible faults, In the simulation study, three competi-
tions were reported; PF3-PFl, PF2-PF4 and PF5-PF3,
where the left is the true fault. It should be noticed
that an assumption, that the maximum degree of fault
should be limited to the 30% variation of correspond-
ing parameters, has been made for this development.
It means that our concern is the detection of incipient
fault. Although the FDI subsystem was designed
based -on the fault data for the range of 5% to 30%,
the subsystem works very well even for 50% or
larger magnitude of faults.

5. Conclusions

In this paper, a MOS type FDIS is proposed and
applied to a DC motor driven centrifugal pump
system. The FDIS removes the difficulties of
conventional MOS because it doesn't require threshold
values, and provides reasonable decisions even in an
uncertain environment. The design and evaluation of
diagnostic rule-base is illustrated and a new
evaluation method with which the quality of rule-base
can be evaluated, is suggested. The application of this
evaluation criterion to the selection of condition
variables and diagnostic rules is described. In contrast
to the conventional ARM based FDI schemes, it is
always possible to introduce human knowledge in the
design stage and external information that cannot be
represented in terms of state variables may be
included in the rule-base. It is noteworthy that there
is a strong relationship between the severity of a
fault and the membership grade. The design concepts
are applied to a DC motor driven centrifugal pump
system.
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