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Robust Controller Design with Novel Sliding Mode Surface
- Linear Optimal Control Case

SEUNG KYU PARK, HO KYUN AHN. TAE WON KiM
Department of Electrical Enginesring. Changwon National University

Abstract - In this paper. a novel sliding
surface is proposed by introducing a virtual
state. This sliding surface has nominal

dynamics of an original system and makes it ~

possible that the Sliding Mode Control(SMCQC)
technique is used with the various types of
controllers. Its design is based on the
augmented system whose dynamics have one
higher order than that of the original system.
The reaching phase is removed by using an
initial virtual state which makes the initial
switching function equal to zero.

1. Introduction
The SMC is a popular robust control method which
has many good results and its applications[1],
however it has the reaching phase problem and the
input chattering problem[2]{3). Besides these two
problems, the SMC is very conservative to be used

with other controller design methods because the state

trajectories of SMC system is determined by the
sliding mode dynamics which can not have the same
order dynamics of the original system. To overcome
this conservatismi and remove the reaching phase, a
novel virtual state is defined based on the
controllable canonical form of the nominal system.
With this virtual state, an augmented system is
constructed and a novel sliding 'mode surface is
proposed. This makes it possible that the new
sliding mode has the dynamics of the nominal system
which is the desired dynamics controlled by various
types of control strategies. In this paper, an optimal
controller is considered as a nominal one and sliding
mode has .the dynamics of the nominal optimal control
system. By using an initial virtual state which makes
the initial switching function equal zero, the reaching
phase is removed.

2. Problem Statement
Consider the n-th order system described by

x()=(A+ 4A)x() + (B+ 4B)ul(t) + DA ) 1)
where xR" ueR, feR" and the bounded uncertainties
4dA, 4B and the disturbance matrix L satisfy he
following matching condition.

rank([B: 4A ¢ 4B D)) =rankB (2)

The existing sliding mode surfaces have the following
forml[4].
Kz, D=c,(Dx,+ cn-pnDx(u-n+a(dx;+ c(H=0 (3)
where ¢y(8, )(8) -~ ¢, (), are given so that sliding
mode dynamics can be stable.
The above sliding surface has (n-1)-th order
dynamics which are not the same as the n-th order
dynamics of the original system. The reaching phase
exists when the initial s(x, £} is not zero.
The following condition guarantees
mode[1].

the sliding

s(x, 1) s(x, H<0 4
Using a number of existing techniques[2), the above
condition can be satisfied by solving for the

functionals %#*(-) and « (-} of, the following
feedback contrel which is discontinuous on the surface
defined by s(x, # -
(), for s>0
(- )= {u( ) for s<0 ®)
The problems to be solved in this paper is as follows.
~ to overcome the conservatism of SMC by using a
novel sliding mode surface which has the same
dynamics of the nominal original system controlled by
a nominal controller.
-~ to remove reaching phase.
3. SMC with New sliding surface
Various types of sliding surfaces have been proposed
including time-varying sliding mode surface[5]. These
existing sliding mode surface can not have the
dynamics of the original system controlled by other
type of controller. This makes the conventional SMC
very conservative to be combined with the other
types of control strategies. To overcome this
conservatism completely, a new SMC, with a novel
sliding mode surface which has the dynamic of the
nominal original system controlled by nominal
controller, is proposed. The novel sliding surface is
designed based on the augmented system which has a
virtual state. The virtual state is defined from the
controllable canonical form of the nominal system.
Let's consider the following nominal system for the
original system of Eq.(1).
x2,(8) = Ax, () + Bu,(2) (6)
where u(x, (8,9 is a nominal regulating control
input and differentiable.
The novel virtual state is defined based on the
following controllable canonical form for the above
system.

2 =Az2,D+ B.u,(? (7

0 100 0
with 4,={ 0 01 0] g0
—aj a, - —-a, 1

A novel virtual state z,, which is proposed in this
paper, is defined as a derivative of =z, and its
dynamic is

Zool ==, 2, — arzg(D— 12D+ ulx,, ) (8)
This is the differential form of the last equation of
Eq.(7). From the above equation, the following novel
virtual state z, will be defined by replacing nominal
state 2z, with original state z.
A novel virtual state is defined to have the following
dynamic.

z2,(D=—a,20) —apz3() — a2 D+ ux, 9
where u,(x,f) and u,(x,t are obtained from u/x,,?)
and wu,(x,, f) respectively by replacing nominal state
X, with original state x .

Any uncertainty must not be considered in this
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procedure.

With the novel virtual state, the augmented system is
constructed as follows.

3;(:)=(A+AA)x(t)+(B+AB)u(:)+Df(t)
z,(D=—a,z,(8) —azs(D— a,2,{ D + w,(x, D (10)
where »(#) guarantees the sliding mode on the sliding
mode surface.
For the above augmented system, the new sliding
mode surface is defined as

s(z,2,)=2,(D+ a2, (D +az)(D—=ufx,H=0 (11)
The following initial virtual state makes the intial
value of s(z,z,) equal to zero.

Zv(to)="'a’n2‘n(f0)""‘0121(l‘0)+uo(to) (12)

This removes the reaching phase completely.
Now the following theorem is obtained.

Theorem 1. The novel sliding mode surface s(x,z,)

of Eq.(11) has the same dynamics as those of the
nominal system of Eq.(6) and Eq.7) controlled by

nominal control input.
Proof) Suppose z,,2p ... Zom 2 are on the sliding
24 Xot

surface where |%2|=p|Xa

Zon Xon

Then the following equation is satisfied. '
'Zov(t)+anzon(t)'"+alzol(t)_ua(xo,t)=0 (13)
Set 202=Z.als"'yzon= ‘éo(n—l)- S : (14)

By differentjating Eq.(13),
Zal D+ @z D+ ayy 2yn-p (D + a1 29(D— ulx,, D
2D+ @p2on(D + @y 1200 O + @1 20(D — u(x,, D=0

(15)
is obtained.

According to Eq.(10), z,, has the following dynamic.

Zo(D=— @ 20( D) — arz2 (D) — @ 20D + (%, D -
(16)
From Eq.(15) and Eq.(16), ]
Zoy = Zop (17)
Now the following is obtained from the Eq.(13).
‘zon(t) = anzon( t)' - 02202( t) - alzal(t) + ua(xm t)
(18)
Eq.(18) and Eq.(14) are the canonical form of the
nominal system. It is transformed to the Eq.(6) by the
transformation x,(f)= P '2,(9. Therefore the novel
sliding mode surface s(x,z,) has the same dynamics

as that of the nominal system.
End of Proof

From Theorem 1 mentioned above and SMC theory,
the following result is obtained.

Theorem 2. If SMC input «(# is designed to force
the states of the system onto the sliding surface
s(z,z,), then the states x(f) follow the trajectories

of the nominal system controlled by u.(x, 1.

Proof) It is obvious from the Theorem 1 and SMC
theory.

Note that the nominal control input #,(x,#) can be
any type of control input and this makes it possible
that the SMC is used with the various type of
controllers. This means that the conservatism of the
SMC is removed.

4. Robust Optimal Control using the Nov
Mode Surface

Using an optimal controller as a nominal control input
u,(x,f), a robust optimal controller, which makes the

states follow the optimal trajectories in spite of

parameter uncertainties, can be defined. For a clear
explanation, let’s consider the following second order
system. This can be extended to the n-th order
system without loss of generality.

#() = (A+4A)x(8) + Bu() (19)
where A=[an @] ga={4au da,
ay axj’ day day

and da;<J; (constant).
Its nominal system is as follows.

x(8) = Ax,(8) + Bu(x,, ) (20)
Performance index for the above system is given by

= :O—%(x.,TQx‘,-i-mﬁ)dt @

The optimal control input for the nominal system is

w(x)=—-L1b, ) Sxs(D=—[k klx(D (22)

Y

where S is the solution of the following Riccati
equation.

-SA-A"S-Q@+-L sB"Bs=0 (23)
The nominal system with this optimal control input is
xo{ 1) = Ax () + Buy(x,) (24)

w.(x,) is calculated as follows.
uy=—K(Ax,+ Bu' (1)
=kyxg+kixe (25)
ky=—ky(ay — biky) — ky(an — boky)
ky=—ky(ap— biky) — ky(an — boky)
The following canonical system is obtained by a state

where

transformation z,= [ by ? 12] X,
P2 Dz

z'a(:)=[ 0

1 ]za( R HEEN 26)
—ay T 1
According to Eq.(9), the virtual state 2z, is defined
as )
Z,=— ay2;— @32, + uy(x)
=(—-alpm+k3)x1+('—01p22+k4)x2—a22, 27)
The augmented system is constructed as follows.
x(8) = (A+4A)x(H) + Bulx) ]
Z.,,( t) = ammxl( t) - dlpzzxZ(t) - azzv( t) + uf,(x) (28)
For the above system, the proposed novel sliding
surface is given by

s=2z,+ a12; + @222 — u(x)

= z,4 ksx; + kex, =0 29

where k5=—01p”—agp21+k1 ‘
ks=—a1pp— otk
Sliding mode control input «(# is given by
u(t)= k9x1+k10x2+kuzv 30

where kg, kg, ky; are variable gains which guarantee
the sliding mode.

5. Numerical Examples and Simulation Results
Consider the following second order system.

1D =(~1+dap)x,(D+ u(d)
(D= Adax, () —2x,( ) + u( P
where |4a,1<3
Performance index is given as follows.
J= ftn -%(xor[ 100 (1) xo+ u)dt
The optimal control input for the nominal system is
u,',(x,,) = 2.?8451’,71 -0. 13921702
From Eq.(27) z, is defined by
2,=9.8215x,—3.3843x,— 3z, -
SMC control input is obtained as follows.
u=(—1.5742x, — 4.0005sgn(x,)x; +2.3777x,+0.5532z,
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where s=z,+1.2845x, + 4.1392x,

The simulation results are shown in the following
figures. Fig.l shows that the reaching phase is
removed. The optimal trajectories of x; and xy
without parameter uncertainties are presented in Fig.2.
Fig.3 'shows the state trajectories of x; and x;
controlled by optimal controller with uncertainties.
They are not optimal trajectories any more. The state
trajectories of x; and x; controlled by new SMC
with parameter uncertainties are shown in Figd. In
Fig.2, Figd4, it is shown that the proposed sliding
mode has the nominal dynamics of the optimal control
system. This means that the trajectories of the
system controlled by new SMC follow the nominal 1
trajectories in spite of parameter uncertainties. Fig.5
shows the trajectory of x, and x,. Fig6 is for the
control input. Fig.7 is the value of switching function

s(x, ;).
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Fig.l Phase trajectory of sliding mode design
using the novel sliding mode surface
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Fig.2 The optimal trajectories of x; and x,
without uncertainties
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Fig.3 The state trajectories of x, and x; controlled
by the optimal controller with uncertainties
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Fig.4 The state trajectories of x; and x, controlled
by the new SMC with uncertainties

I RN EEE RN

Te A4 18 2 36 3 8 4 s o
nweleery

Fig.5 The trajectories of virtual state z,
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Fig.6 The SMC input u(#
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Fig.7 The value of s(x,z,)

6. Conclusions

A novel design method of sliding mode surface has
been proposed. With this sliding mode surface, a new
SMC, which makes the states of the system follow
the . nominal trajectory controlled by a nominal
controller, can be designed. Any type of controller
which is differentiable, can be a nominal controller. It
has shown that the robust optimal controller with the
novel sliding mode is designed using optimal
controller as a nominal one. The reaching phase is
easily removed by setting initial appropriately. The
result of this paper opens up very attractive area that
various type of controller can be combined with the
novel sliding mode surface.
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