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ABSTRACT - This paper presents a newly developed
speed sensorless drive using RLS based on Neural
Network Training Algorithm. The proposed algorithm
has just the fime-varying learning rate, while the well-
known back-propagation algorithm based on gradient
descent has a constant learning rate. The number of
iterations required by the new algorithm to converge is
less than that of the back-propagation algorithm. The
theoretical analysis and experimental results to verify the
effectiveness of the proposed control stratepy are
described.

I . INTRODUCTION

The Recursive Least Squares is well known as a state
estimation method for a nonlinear system, and can be
used as a parameter estimation method by augmenting the
state which unknown parameters. A multi-layered neural
network is a nonlinear system having a layered structure,
and its learning algorithm is regarded as parameter
estimation for such a non-linear system[1]. In this paper,
a new real-time learning algorithin for a mulii-layered
neural network is derived from the RLS. This method
minimizes the global sum of the squared errors between
the actual and the desired output values iteratively. The
weights in the network are updated upon the arrival of a
new training sample and by solving a system of normal
equations recursively. Since this RLS-based learning
algorithm approximately gives the minimum covariance
estimate of the weights. the convergence performance is
improved in comparison with the backward error
propagation algorithm using the steepest descent
techniques{2]. The proposed algorithm, though
computationally complex has an adaptive varying
learning rate, while the back-propagation algorithm has
constant learning rate. The proposed learning algorithm
usually converges in a few iterations and the error is
comparable to that of the well-kmown back-propagation
algorithm.
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II. FLUX ESTIMATOR WITH FILTER
CONCEPT

Induction motor rotor fluxes are selected to represent
the desired and estimated state variable. The following
two independent estimators, in the stationary frame, are
generally used to derive these rotor fluxes.

A. Current Model of Rotor Circuit

The rotor flux estimator can be formed if the stator
current and the rotor speed are measured in real time. It
can be represented as follows.
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B. Voltage Model of Stator Circuit

The voltage model utilizes the stator voltages and
currents. but not the rotor velocity. It is commonly used to
implement direct field orentation without speed sensors
for low cost drive applications. The rotor fluxes in the
stationary d-q reference frame can be obtained,
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C. Rotor Flux Estimator Using Filter Concept

It is well known that the current model is heavily
dependent on the parameter accuracy. Similarly, though
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the voltage model has less sensitivity: on the parameter
accuracy. the low speed sensitivity is a well acknowledged
limitation of this observer due to the stator resistance and
the offset problem. Thus. by utilizing the current model in
the low speed range and voltage model in the high-speed
range. more accyrate rolor flux can be obtained in wide
spced range. In this paper. the filter concept is used to
utilize the current mode! in low frequency region and the
voltage modcl in high frequency region. The resultant
rotor flux is obtained from the iow pass filtered current
model rotor flux and the high pass filtered voltage model
rotor flux. The resultant rotor flux observer is written as:

/ili chr = [HP-[J]):sdq" vpo T [L})}fl/{' Ly (3)
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Where. A4 .mdenotes the voltage model totor

fluxcs. A° 4 ondenotes the current model rotor {luxes

and [HPF]. [LPF ] denote the high pass filtering

operation and the low pass filtering operation
respectively. From (3). a flux angle can be detected.
which enables direct field oriented control.

The filter can be designed in arbitrarv order. For
cxample. second-order filter is used. then
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The coefficients in (4) and (3) can also be determined by
the filter concept. In case of Butterworth filter. the
coeflicients are related as
K, =20, K =0’ ©6)
where denotes the cut-ofl frequency of the filler. Note
that this cut-off frequency is the transition point from
current model 1o voltage model. This flux observer has
less parameter dependency in high specd region and has
higher immunity to noise and measurement error in low
speed region.
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Fig. 1 Flux estimator with both voltage model and current model,

D. Estimator eigen value selection

First of all, to select the eigen values of the estimator.
that of the controlled system should be predetermined
from (1).
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If a high eigen values are sclected for estimator. the
convergence rate is increased bul the estimator stability
will be diminished. In order to cstimate stable flux
quantities. the value of the estimator should be selected
according to that of the system. In this paper, variable
estimator eigen value is applied to satisfy the system
requirements: i.¢. rapid response and stable estimation.
Thus. in this paper. the characteristic root presented by

@, is determined as a function of the machine speed.
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Equation (9) shows that the estimated speed is used in
calculating the cut-off frequency of the filter. In Fig. 2.
the eigen value determination algorithm is illustrated.
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Fig. 2 Eigen value selection of the Flux Estimator,

[I. THE PROPOSED SPEED SENSORLESS
CONTROL ALGORITHM USING RLS

The back-propagation algorithm can be summarized as
follows|[2]

wﬂkvl.k ([ i ]): W, KLk (I‘)+ Awﬂk—l.k (f) (10)
where.

Aw S ()= nc?_iko, Ty alw, G —1)
o, = (t L~ o0, ) f ’(i_/ k) for the output layer

(X )Z 3,w, for the hidden layer
k
The back-propagation training algonthm is an
iterative gradient algorithm designed to minimize the
mean square error between the actual output of a feed-
forward net and the desired output.

o, =

A. Learning algorithm via the Recursive Least Squares

We have reviewed how the back-propagation
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algorithmn essentially implements gradient descent in
sum-squared error. It should be noted. however, that the
learning rate is constant. 50 we may have 10 consume
more time to obtain a sufficiently convergent results, even
though we can take into account a momentum term. Qur
main theoretical contribution here is to show that there is
an efficient way of computing a time-varying learning
rate.

Qur lcarning stralcgy is based on regarding the
learning of a network as an estimation (or identification)
problem of constant parameters. ‘

The output layer of the multi-layered neural network
is expressed by the following models with nonlinear
observation equations :

3+ =Hw, @+ 1))=0, (+1) (11)

The recursive least squares method partitions the
layers of an NN into a linear set of input-outpul equations
and applies the common RLS algorithm to update the
weights in each layer. The application of the RLS
algorithm for a weight matrix update gives the following
real-time learning algorithms :

ﬁ]ﬁ (T + 1) = 1:i/ji (t) + ‘K_]1 (t)lyj (r) - 0] o (f)j (12)
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where A (0 <A= 1) is the forgetting factor, K , (l‘ ) is

the gain matrix, P, (t +1]f+ 1) is covariance matrix,

D, (t) is the input to the layer, y, (l‘) is the desired
oulput.

B. Speed sensorless control strategy

Two independent observers are used to estimate the
rotor flux vectors: one based on (1) and the other based on

(2). Since (1) does not involve the speed @, , this
observer generates the desired value of rotor flux, and (2)
which does involve @, may be regarded as a neural
model with adjustable weights. The crror between the
desired rotor flux A'4 vm given by (1) and the rotor

fux A’4yr om provided by the neural model (2) is used to

adjust the weights, in other words the rotor speed @, .

The rotor speed can be derived using the RLS based
on NN. The overall block diagram of speed sensorless
control is shown in Fig. 3.
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Fig. 3.8tructure of RLS based on NN for (D estimation.

The discrete state equation model of (2) can be
rewritten as follows

k)= @7 (K)o (k) 1)
where @7 (k) = l/:is qr _om (k ) X dr_om (k ) g (k )_|
=[xk X&) X&),
ok)=h-yz -1, o,-1, L,/¢-Tf
= [ﬁ/“(k) Wiy (k) Wi (k)]T :
The new weight, W,, (k) is therefore given by
iy e+ )=, (0)+ K, Ky, (0-5, 0 06
where. (k) =g vm (k) :

The estimated rotor speed a),(k) applied by RLS
based on NN is computed as follows
~ -~ T ~
b, +1)=,(6)+ K, ©)y, &) - o @BE) T,

a7
where A can be used to improve the characteristics of
the transient response as follows :
k)= 2,4k =1)+(1—4,)
A, =098, P,(0]0)=5001
IV. SIMULATION RESULTS

A 22kW 4-pole IM is used for the simulation and
experiment simultancously. The proposed sensorless
control of IM is shown in Fig. 5. The nominal parameters

used for the simulations are given Table 1 as follows :

Table 1. Induction Motor Parameters

Rated Power | 22kW Ls 43 75mH
Rated Speed | 2000rpm L, 44 09mH
Rated Torque | 120Nm Lm 42.1mH

R, 0.115 J 0.1618kgm’
Rr 0.0821 P 4

- 295 -



1 b 2 BF u

Fig 4 Comparison of the mean-squarad wrror vasits the fieration number
_for New and BP algorithn

Flux Contraller with Fiiter 4
A Concept :

R " = o
ar - —w = PToLe -

RLS
Fased on
— Newral Nedwark
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Fig. 6 The characdtensucs of spued step response
(= S00{pm]—-500{rpmi. 0.5p.u. load).

The step response of the proposed sensorless
algorithm is shown in Fig. 6 when the speed reference is
changed from 500[rpm} to -300{rpm]. As shown in Fig. G.
we can know that the speed error is limited by 0.5% of the
rating speed. Also, The proposed learning algorithm
usvally converges in a few iicrations and the error is

comparable to that of the well-known vack-propagaton
algorithm.

V. EXPERIMENTAL RESULTS

For the high performance IM drives, the overall IM
drive svstem in Fig. 7 is implemented with a TMS320C31
DSP control board and a PWM IGBT inverter.

For actual load emulation. the DC generator is
coupled to the IM. Actual rotor angle and machine speed
are measured from an incremental encoder with
4096[ppr]| resolution for monitoring. The sampling time
of current controller loop is 230] £&8 | and that of the outer
voltage regulating loop and speed loop is 2.5fms}. The
control algorithm including the proposed scheme was
fully implemented with the software.
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Fig, 7 The overall IM drive system.
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Fig. 8 The experimental waveforms of slep response
( r10[rpm]-2 -10[pm}. T1.-0{p.u|).
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Fig. 11 The experimental waveforms of step response
(0[rpm]->+500(rpm], TL=1.0[p.u]).

Experiments are conducted to evaluate the
performance of the new speed sensor elimination

algorithm based on the NN. The step response of the
proposed sensorless algorithm is shown from fig. 8 to fig.
9 when the speed reference is changed with no load
torque. It shows that the estimated speed is tracking the
real one with good accuracy. Fig 10 and fig. 11 show the
characteristics of load torque response. As shown in those
figure, the proposed algorithm works well in spite of the
load torque variation.

VI. CONCLUSION

We have studied learning algorithm for multi-layered
feed-forward type neural networks and proposed a new
back-propagation algorithm that uwses Recursive Least
Squares algorithm to identify the connection weights of
the network. This algorithm has the feature that the
learning rate is time dependent, whereas the algorithm of
conventional back-propagation has a constant learning
rate. Using some simulation examples, we have made two
points:

(2) when a sufficiently convergent solution is desired, the
present method assures faster learning than the
generalized delta rule.

(b) the proposed method works well even though the
initial weights are relatively large. whereas the
generalized delta rule is convergent only in the case
where the initial weights are relatively small.
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