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Abstract

In this paper, we present robust reliable H™
controller design methods of continucus and discrete
uncertain time delay systems through LMI(linear
matrix inequality) approach, respectively, Also the
existence conditions of state feedback control are
preposed. Using some changes of variables and
Schur  complements, the obtained sufficient
concditions are transformed into LMI form. We show
the wvalidity of the proposed method through

numerical examples.

1. Introduction

The robust H™ controller design method of
parameter uncertain  time delay systems  has
attracted the attention of many control researchers
[1,2,3,45]. Recently Seo et all6] and Veillet et al[7}
comsider the problem of reliable H™ control design.
Especially, Seo et all6] considered the problem of
robust and reliable H™ control design for linear
uncertain systems with time-varying norm-bounded
parameter uncertainty in the state matrix and also
with actuator failures among a prespecified subset of
actuators. However they did not deal with time
delay. Gu et @l[8] and Wangl9] treated the problem
of robust H” reliable control for linear state delayed
systems  with parameter uncertainty through
algebraic Riccati equation approach. Their works
were considered in  continuous time case. Also,
LMI(linear matrix inequality) Toolhox by convex
optimization  algorithms  has  been  developed.
Therefore our objective is to find static state
feedback controller in continuous time case and
discrete time case through LMI technigue,
respectively.

In this paper, we present state feedback
controller satisfying quadratic stability with H*

—norm bound for all admissible uncertainties and all
actuator faillures occurred within the prespecified
subset in conuinuous and discrete time case. The
sufficient  conditions and the controller design
method  are  proposed.  Also,
demonstrated.

examples  are

2. Main results
Consider the system described by uncertain time
delay systerns

&) = [A+ QAN+ [ A+ AL ]2 t—d)
+[ B, +AB(tNu(t) +[ B+ AB,(£)]w(2)

28 = [C+AC D]zt + [ Cat ACL ]zt —
HDFADADNU )+ [ Do+ 4Dl £)
X&) = 0, <0

(n

where x2(f)ER" is the state, #()eR" is the
control input, w(f)eR” is the square integrable
disturbance input vector and {#)eR’ is the
controlled  output.  All matrices have appropriate
dimensions and we  assume that all states are
measurable. In here,

_[ x(8): (CT)
ax(:r)—[x(tJr TN @

where CT and DT mean continuous and discrete
time, respectively. And the parameter uncertainties
are defined as follows:

AC(8) AD,(¢t) 4D () ACL¢) (3)
:[IH{J{ F(t)[ Ex Eu Ew Ea‘}

[AA(t) 4B t) 4B,(t) AA L)

where H, H, E, E, E, E,; are known real
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matrices and F(f) is an unknown matrix function
which is bounded by

Ftye  ={F(#): F(OTF(H<I the elements 4,
of F(t} are Lebesgue measurable}.

Now, we classify actuators of the system (1)
into two groups similar to the works[6,7). One is a
selected subset of actuators susceptible to failures,
which is dencted by @2c{l1,2,..., m}. This set of
actuator is redundant in terms of the stabilization of
the system, while it may contribute to and is
necessary for Improving contrel performance. The
other is a set of actuators robust to failures, which
is denoted by £2:5{1,2,..., m}— 82 We assume
these actuators never fail and also they are required
in order to stabilize a given system. Introduce a
decomposition

where By and By are formed from B, by zeroing

out columns. In the following, we let as £ denote a
particular subset of susceptible actuators that
actually fail and adopt the following notation

B,= B,+B- )

where B, and B, have meanings analogous to
those of By and By, respectively. From definitions
of B B

following facts

= Hg and Bp, we can obtain the

4]

ByBL = B,BI+Bo .Ba., 7

BsBL = BB +B, By ..

Our objective is to find a memoryless state
feedback controller

wl( ) = Kx{1) (8)

that stabilizes the linear time delay system (1) with
a given H~ norm constraint on disturbance
attenuation, for all admissible uncertainties and all
actuators failures occurred within the prespecified
subset 2.

Lemma 1. For given >0 and 4>0, the system (1)
is QSH”-AF(guadratically stabilizable with H"”

norm bound for all admissible uncertainties and all
actuator failures occurred within the subset £} by
state feedback control (8) if and only if the system

&x(f) = AN+ Aa(t—d)+ B zuld)

+[ B, 7H, Bol u(t) @

i =[,C |«o+] “ a0
TEI jEd
+[Pelun+ 1Dw rAH, Do) o 1)
4 L G Ee 00

is QSH”-AT for the samc state feedback control
(8). Therefore the original system (1} can he
transformed into the system without parameter
uncertainties and particular subsct of the susceptible
actuators.

Proof. Omitted due to space limit. [

For simplicity of manipulation, rewrite the system
(9 as follows:

() = Ax()+ Apa(i—d)+ Bul( )+ Bw(t) (o)
208y = B+ Cp(t— )+ Dyae( Y+ Dy ()

where

B=B, B=IB, 7H, Bal, C= 1C }

B
= ICd b= iD?z , Dy = 1Dw #H: Da| ()
T Ed T E, SE. 00
(1)
R O T B
a(r)—[gm]. w(t)—[t'((!t))]

Here z(t} and 2z(¢) are additional input and output,
and ©{t) is the output of faulty actuators. When we
apply the control (8) to the system (10), the closed
lonp system from #(t) to z(¢) is given by

S = Ap()+ Ap(t— )+ Buls) (12)
2ty = Cpd D+ Colt—d)+ Dyl )

where Ag=A+BK and Cp=C+DK
Lemma 2. For given >0 and A>0, the system (1)

is QSH-AF with the controller {8) if there exist
positive definite matrices P and R such that

(i CT case
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AlP+PA+R PA, PB C}

* R 0 Clly oy
* * —41 D]
* * * -7

(4i) DT case
- [J_l A{" Aai g 0
£ —P+R 0 0 CF

«  —R 0 CI|<o (14)
* * * —y] DZT
* *® * * ey

hold for time delay and all actuators failures
occurred  within  the subset 2. Here * mean
symmetric terms.

Proof. From the Lyapunov functional

V(x(£)) : = x(t)TPx(t)+f!idx(r) TRx(r)elr CT5
TP+ 3 ) Re(i) - DT

and the performance measure

Ji= .Em[E(t)TE(”_Vzaf(t)z‘@(t)]dt: CT a6
;[E(t)ré(t)—yza(t)%(t)]: DT

the sufficient conditions (13) and (14) can be
derived. [ |

However the conditions (13) and (14) is not an LMI
form in terms of each finding variable P, R, K. It
is shown that the (13) and (14) are transforrmed into
[LLMI form in the following theorem.

Theorem 1. Consider closed loop system (12). For
given >0 and A>0, if there exist a matrix M and
positive definite matrices €, S such that

(i} CT case

QAT+ AQ+MTBT+ BM+ A,SAT B

* 7;{2[

¥ * an
* *
MIDT+Q CT+A,SCT @
Dy 0 1¢p
—I1+ &SCT 0
* -5

(iil) DT case

~Q+ASAT AQ+BM B

* -8 1]
* =7 a8)
* *® *
* * *
ASCT 0
QCT+MTDT g
Dr 0 |<o
—I+ C8CT 0
* -S

holds for time delay and all actuators failures
occurred within the subset 2.

Proof. Using Schur complements and the changes of
variables

M=KP', Q= P! S=R" (19

the obtained sufficient conditions (13) and {14) are
changed to (17) and (18), respectively. [ ]

Remark 1. The (17} and (18) are LMI form in
terms of changed variagbles. Fherefore robust rehable
H" state feedback controller K can be calculated
from the M= KP™' after finding the LMI solutions
Q M and S from the (17) and (18). Using LMI
toolbox[11], the solutions can be easily ohtained at a
timne.

Remark 2. If the value of y and A are given, the
nequalities (17) and (18) are LMI form. However,
the existence of all solutions depends on the value
of A The area of future rescarch would be w
develop the algonthm  obtaining  the  solutions
independently of A.

3. Numerical Example
Consider the uncertain time delay svstem of the
same example in [9] with

4 002 —0.1
A--=1_0.3 3 -0.2],
0.3 —-0.1 2
—0.2 0.05 0.01
Ad=[ 0 —-03 © ]
0 ] 0
502 0 0.01 0
B,‘=[ 0 3 0.1], Bu.=[0.1 0 }
0.1 0 0.03 0 0.1
_J0.20 0
¢ 0 00.2
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0.08 0 0 6.4 ¢ 0
H=1 0 0.08 G‘. E,={ 0 002 90 ‘
g 0 0 0 0 0.04
0.02 0 0
.0 0 0.02

and other matrices arc zero matrices with proper
dimensions. For simulation, we take y=3, A=1,
and £2={3}. we have

5 020 00 0
Bﬁ=[ 0 3 0}, Bo=00 0.1]
0.1 0 0 00 0.03

In the case of continuous time case, all solutions
and state feedback gain are

—0.8625 34.7574 0.7573
—0.8744 0.7573  0.0723

25.5851 —0.8625 —0.8744

o | |
79.1138 —0.0609 1.6534

5= [“0.0509 80.1428 —0.7005},
1.6534 —0.7005 87.1236

—31.7756  4.9475  0.0007
M= I 0.2205 -51.013 —0.3589],
0 0 o

0.8449 —2.0233 26.4649
0 0 0

—2.6781 1.0132 —43.0195
K- | |

‘The obtained conuinuous time state feedhack control
guarantees QSHT-AF. Similarly to the continucus
ume case, all solutions and discrete time  state
feedback gain is obtained as follows:

17.3768 8.7877 —1.4222
Q= { 87877 304.2086 13.6712 }
—1.4222 13.6712 1.0808
253.0382 231.4889 26.5253
S = [231.4889 624.3931 *4.4061}.
26.5253 —4.4061 837.7026
—13.6346  4.2413 1.4096
M= l—5.8558 —291.9699 11.2058].
0 0 0
—0.897¢ 0.0795 -—0.8819
K = | 0.999% —1.3483 &.0030 ]
0 0 0

Also the obtained discrete time state feedback
controller guarantees QSH -AF of the closed loop

system.

4. Conclusion
We presented controller design  algorithms  of

continuous and discrete  uncertain  time  delay
systems through LMI approach. From the Lyapunov
functions and performance measures, the existence
conditions of state feedback controller were given.
Also, the obtained conditions  were

transformed into LMI form using some changes of

sufficient

variables and Schur complements.
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