WS E R ABEF LTS E KEFHESEH A oL B208 28 981

RM A& 3} Lock-Free 3-&70A o ¢ 3
3

AANZE Al geol A

T

MEAHEAT
(T) 042-870-2477
The Real-Time Constructive Simulation

With the RM Scheduling and Lock-free Shared Objects

Park, Hyun Kyoo
BCTP Corps

Abstract

The Constructive Battle Simulation Model is very
important to the recent military training for the
substitution of the field training. However, real
battlefield
conditions, they are inherently distributed, concurrent

systems operate under real-time
and dynamic. In order to reflect these properties by
the computer-based simulation systems which
represent teal world processes, we have been
developing constructive simulation mode!l for several
years,

The constructive simulation system is one of the
fammous real-time system software, and the one
common feature of all real-time systems is defined
as the correctness of the system depend not ¢nly on
the logical result of computation, but also on the
time at which the results are produced.
Conventionally, scheduling and resource allocation
aclivities which have timing constraints are major
problem of real-time computing systems, To
overcome these constraints, we elaborated on these
issues and developed the simulation system on
commercially available hardware and operating
system with lock-free resource allocation scheme

and rate monotonic scheduling,

1. Introduction
The Army’'s C2(Command & Contrel) training

simulation models are interactive computer-driven
systermns that assist training readers, commanders,
and their staffs (o develop and maintain the unit
readiness.

Most work on implementing shared objects in
preemptive hard real-time uniprocesscr systems has
focused on using the priority-driven scheduling and
lock-based critical sections to cnsure object
consistency with a cost ineffectiveness, thus it
specifically increased operating system overhead.

In the constructive simulatios, lock-free object
implementations are of interest because they avoid
priority inversion and deadlock with no underlving
operating system supporl for object sharing.
Additionally, we can assimilate the user interactions
and the infercnce events as the rate monotonic
scheme.

Since, in a hard real-time system, unless prierity
inversions are carefully controlled, it may be difficult
or impossible to ensure that task deadlines are

always met.

Theoretical Background And Previous
Studies

There are some key definitions that apply through
this paper are enlisted below.

Event ' A change of object attribute value, an
interaction between objects, an instantiation of a

- 519 -

B EHE AMBEFTTIEN KEHLBM AR BX K B2 % 28 98/

new ohject, or a deletion of an existing ohject that
is associated with a particular point on the
simulation time axis. Each event contains a time
stamp indicating when it is said to occur.

Logical Time : A simulation system’s current point
on the logical time axis used to specify before and
after relationships among events. Specifically, the
simulation requests advances in logical time via
Time Advance Request and the simulation system
notify the advance of logical time through the Time
Advance Grant service.

Wallclock time : a simulation systermn’s measurement
of true global time, where the measurement is

typically output from a hardware clock.

Lock-free Object Sharing

The lock-free approach to real-time object sharing
that we investigated was done by previously some
twenty vyears ago in the real-time systems
community. But this idea was forgotten for many
years.

Representative lock—free operations are usually
implemented using “retry loops,” such as figure-1.
It depicts a lock-free operation example which is
implemented in this way. In figure-1, a message is
inserted in the buffer by using a write instruction to
update the buffer status by changing a tail pointer
and either the next pointer of the last item in the
buffer or a head pointer, depending on whether the
buffer is empty. This loop is executed repeatedly
until the write instruction succeeds.

The buffer is not explicitly locked by any task, so it
is essential property of lock-free implementations
that operations may interfere with each other. An
interference results in this example when a
successful wrife by on tlask results in a failed write
by another task. However, it is not immediately
apparent that lock-free shared objects can be
employed of tasks must adhere tc strict timing

constraints.

class SharedBuffer
public variable
Head, Tail : pointer
AccessKey @ Integer
method write (stream)
private variable
Old, New : pointer
do
if Old = Null then add stream;

else add stream; send signal;

until EventRemaind(}

Figure-1 : Lock-free Shared Buffer Implementation

Rate Monotonic Real-Time Scheduling
Scheduling real-time computations 1s an extremely
important part of a real-time system hecause it is
the phase in which we assign the actual temporal
properties to the computations For many wvears,
Rate Monotonic({RM) scheduling theory offers a set
of engineering principles for managing tming
complexity.

To apply RM scheme in this simulation, it is
assumed that task deadlines and periods coincide, i.e,
each invocation of a task must complete execution
before the next invocation that task begins.

Under RM scheme, the necessary and sufficient
conditions for the schedulability of a set of periodic
tasks that share lock-free objects were formerly
investigated. For brevity, we omit the proof of this
condition here, and the formal proof within our
model can be found in [3].

The following two theorems give the necessary and
sufficient conditions for the scheduling by RM
scheme in this simulation.

Theorem 1. {Necessity under RM) If set of periodic
tasks that share lock-free objects is schedulable
under the RM scheme, then the following condition

holds for every task T,

- 520 -

RM zAl&4 3 Lock-Free Ff7HAd 4t A Al gaej4d

, . ¢
Qe 0 << pe | =1 - <t
d¢ 0 4 D gl i [

The left-hand side of the quantified expression
gives the minimum demand - which arises when
there are no interferences - placed on the processor
by 17 and higher-priority lasks in the interval [0, ¢]
where 0 < ¢ < p. The nght-hand side gives the
available processor time in that interval.

Theorerm 2. {Sufficiency under RM) A set of
periodic tasks that share lock-free objects is
schedulable under the RM scheme if the following

conditien holds for every task T

L
~
[

AN
-
i

Y by,
plfg]fp]-‘ &)

o
"

where

p, - The period of task T o < pp = 1 <}

T, ! i task in the system

¢ The waorst-case computational cost of task T;

s © The execution time required for one loop
iteration in the implementation of a lock-free object,
which for simplicity is assumed tc be the same for

all objects
Time Stamp Event Ordering

We have limit timing complexity with following
constraints. The time peoint is a real number that
represents the occurrence time of an instantaneous
event, and is an individual entity.

Each event is able to access a clock and acquire the
estimate of the current logical time Fi{t)=t* Ai(t),
through the time service. Fift) is the monotonic
function that maps real-time to logical time and 4
15 the latency by the network and operating system
overhead.

Events are delivered to Event-Handler in time

stamp order. The events will nnt he processed until
the cvent with a smaller time stamp being remained.
To accomplish this task, Event-Handler will hold
incoming events in its queue by the time stamp and
also ensure that no event is delivered lo a Event-
Handler "in its past,” ie, no event is delivered that
contains a time stamp less than the system’s
current logical time. This eliminates certain temporal
anomalies that might otherwise occur when various
clients send different ordering events. And each
event has only convex(contiguous) duration unti

completion of execution in this simulation.

Major Features of Implemented Model

and Experimental Results

The simulation model is constructed on single CPU
Sun Ultra-workstation and IBM PCs connected via
local network for clients. The clients have their
own Geographical Information vstem{(GIS) module
and user interaction components to transmit the
cevenls and receive the result messages,

For the logical time in this simulation system, we
use the Unix software clock(Solaris clock) and
distribute the logical time to all processes (o
synchronize the entire system. This time service
called Time Advance Grant{TAG) distribute the
logical time each minute by the progress ratio.
Alsc, sometimes the progress ratio would be
changed by the client request and then this task
will update the scale factor of software clock either
gathering the logical time or loosing time through
Time Advance Request (TAR).

Each event has time stamp by the logical time and
ordered by its time stamp before input to the event
queue.

Lock-free scheme as described, the shared memory
is widely used for the message transmission among
the processes and client nodes which are attached

via the network and controlled by network daemon.

- 521 -

W FE ABRBETLES® REELB MM XE B UK B£208 %28, 981

‘
Ti

5\ Daisbase Q;;Ej

\ Daﬁon

Network Convroller & Database c:}
Daemon Event Handler | | Daemon

0 U
I— Shared Memory |

Time Advance Request
E‘I Time Advance Grant
Event Retraction 3 3

A A

(Ordered by its time starmp)

]

Figure-2 © Simulation Model Architecture

The event-handler has the key role of simulation
both for the legical computational result and the
control of event processing (ordering, retraction, ete).
Through the experiments, this simulation model
supports our requirements with previously described
ideas successfully.

Dut, in this paper, we omit the data gathering and
report generating system which is important part of
the client operation. For the attribute of simulation
systemn, this model is consisted with a separate data
gathering and reporting communication channel,
which trigger the database engine - especially
Informix”. This means that the simulation system
has unpredictable long-~term events. This
infrastiucture constitutes the hasis for aggregation
of simulation results and reporting of the running
system under real application load.

(uaranteed worst-case response

One of the most distinguishing feature of the static
priority scheduling is that it can’t provide
guaranteed timely services to reai-time applications
when the importance of task is changed. The
dynamic or adaptive scheduling might resoive this
problem.

By the constraint of event raising intervals and

durations, we can adhere the static ;;ﬁority with
lock—free object sharing through the adaptation of
logical time service. The Time Advance Request
will change in the time progress ratio adaptively
when the event execution is not expected to meet
the deadline.

Conciuding Remarks & Future Works

The time management structure is intended to

support interoperability among heterogeneous
simulation systems utilizing different internal time
management mechanisms. Eventually this execution
support distributed time advance mechanism for the
next generation distributed simulation model [3].
And our preliminary results proved that the
lock-free shared object with static priority
scheduling is affordable for the real-time simulation
on uniprocessor system. These efforts wiil remove
special hardware and the problem-oriented real-time
operating system support for the wargame area.
However, this scheme needs further expenment to
decide if it can be effectively applied to the hard

real time sirmulation.

FaEd

[1] Levi and Agrawala, ” Real-time System Design”,
McGrow-Hill, 1990.

[2} Training with Simulations, National Simulation
Center, Nov, 1596.

[3] James H. Anderson, et al, “Real-Time
Computing with Lock-Free Shared Objects”,
Proceedings of the 16th IEEE Real-Time Systems
Symposium, Dec. 1995,

(4] @37, “Tinix GFIEAM A2l Ay 237,
A 5ok, 1997,

[5] gt&8qt 9, "IMOR Y& o] f§ &4 HAL 94
A A EHold Rue) i Algdeld &3, 1998

- 522 -

