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ABSTRACT

This paper presents a new computationally efficient
adaptive algorithm for blind signal separation, which
is able to recover the narrowband source signals in
the presence of cochannel interference without a prior
knowledge of array manifold. We derive a new blind
signal separation algorithm using the Natural gradi-
ent [1] from an information-theoretic approach. The
resulting algorithm has the Bussgang property which
has been widely used in blind equalization [12]. Exten-
sive computer simulation results confirm the validity
and high performance of the proposed algorithm.

1. INTRODUCTION

Blind signal separation is a fundamental problem en-
countered in many applications such as multiuser com-
munications, array processing, sonar, and image pro-
cessing. The task of blind signal separation is to calcu-
late the possibly scaled estimates of (unknown) source
signals from their instantanecus mixtures without the
knowledge of mixing nor source signals. Typical ex-
amples are the extraction of multiple signals-of-interest
[14] from the outputs of an array of sensors when cochan-
nel interference is dominant channel impairment or the
recovery of transmitted symbols from the outputs of
a bank of matched filters in Code Division Multiple
Access (CDMA) systems [5].

In blind beamforming or multiuser communications,
an array of sensors {or a bank of matched filters in
CDMA systems) provides an m dimensional observa-
tion vector x(2) which is modeled as a linear instanta-
neous mixture of n dimensional vector of source signals
s(t). This mathematical formulation is described as

x(t) = As(t) + v(2), (1)

where A is an (m x n) mixing matrix. The additive
white Gaussian noise is represented by v(t) which is as-
sumed to statistically independent of sources s{t). We

should mention that the number of sensors m is greater
than or equal to the number of sources.

For an array of sensors that are uniformly spaced
( assuming the antenna elements are omnidirectional),
the mixing matrix A is given by

1 e 1
it e—i#n
A= : , (2)
e—Jlm—1}¢ e—dlm-1)¢n,

where ¢y = 2n(d/A) sin(8y), d is the interelement spac-
ing, A is the wavelength of the sources, and 8 is the an-
gle of arrival (AQA) of the kth source. The colutnns of
the matrix A are known as direction vectors or steering
vectors because they indicate the response of the array
to a narrowband source estimating from a particular
direction,.

In order to recover the source signals s(f), we de-
sign an adaptive system W(t} whose output y(t) is
described as

y(t) = W(£)x(2). (3)

In the context of blind signal separation, it is desir-
able to update the demixing system W (t) such that the
global system G(t) = W(t)A converges to the gener-
alized permutation matrix as ¢ — oo, i.e., the steady-
state value G becomes

G =PA, (4)

where P i8 the permutation matrix and A is nonsingu-
lar diagonal matrix.

In contrast to the conventional approaches to sig-
nal separation, blind signal separation is based on the
statistical independence of sources. Since Jutten and
Herault’s proposal [13], a variety of algorithms have
been developed [10, 3, 2, 4, 9, 8, ?, 6]. Recently signal
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separation algorithms based on the Constant Modulus
{CM) criterion [16] have been developed [14, 5.

In this paper, we focus on communication signals
which are sub-Gaussian signala (negative kurtosis) and
symmetrically distributed. Exploiting these, we derive
a Bussgang-type blind signal separation algorithm.

2. MODEL ASSUMPTIONS AND
SEPARATION PRINCIPLE

We make the following assumptions throughout this
paper:

AS1: The mixing matrix A is of full column rank.
AS2: Elements of the source vector s(t) are muytually
independent.

AS3: At most, one source signal is Gaussian. (the rest
of them are non-Gaussian}

AS4: Each element of source vector s(t) is zero mean
with non-zero variance.

AS5: All source signals {s;(f)} are sub-Gaussian, i.e.,
their kurtosis are negative.

AS6: All source signals {s;(2)} are symmetrically dis-
tributed, i.e., their skewness are zero.

Let us consider a linear mapping from acurce signals
s(t) to the demixing system output y{¢) in terms of the
global transformation G = WA (W is the steady-state
value of W(1)},

y(} = Gs(t). {5)

The vector of source sighals, 8(t) consists of statistically
independent non-Gaussian signals. The blind signal
separation boils down to force all components of y(t)
as independent as possible.

The elements of the measurement data x(t) are
not statistically independent since source signal vector
s(t) is linearly transformed. To recover the source sig-
nals, we should transform the measurement data x(t)
inte ¥(¢) whose elements are statistically independent.
Thus blind signal separation is called sometimes “in-
dependent component analysis”. As an optimization
criterion, we choose Kullback-Leibler divergence which
is an asymmetric measure between two different distri-
butions. Our risk function R(W) is given by

It

KW [ 2]

i=1

P{y)
/ p(y)log [T, Pi(!li)dy

R(W)

I

E{logp(y)} — D_ E{logpi(yi)}, (6)
i=1

where p(y) is joint probability density of y (t) and pi{y:)
is the marginal probability density of w{(t). E{-} de-
notes the statistical expectation. The Kuliback-Leibler
divergence K{p(y)|| [T;_, pi(3:)] is nothing but mutual
information F(¥}. This is always greater than or equal
to zero [11]. The minimum occurs if and only if all
components of y(t) are statistically independent.

3. THE ADAPTATION ALGORITHM

For the sake of simplicity, we consider the case where
the number of sensors are equal to the number of sources,
i.e. m = n, however the algorithm can be easily ex-
tended to the case where m > n {not m < n). Additive
noise v(t) is neglected. Consider a demixing system
W (t) whose output y¥{t) is described as

y (£} = W()x(t). (7}

The joint probability density of the observation x(t)
and the joint probability density of the demixing sys-
tem output y(#) has the following relation,

p(x)
| det W}° (&)

ply) =

where the det denotes the determinant of a matrix.
With this relation, the risk function (6) can be written
as

~H(x) — log |detW| + Zn: H(y:), (9)

i=1

R(W) =

where H(x) is the joint (differential} entropy of the
mixture vector x(£) and H(y;) is the marginal entropy
of y;(t).

Note that the risk function (8) depends on the prob-
ability distribution p;(-), however, a prior knowledge of
marginal distribution of sources is not available. Thus,
we approximate the marginal probability density func-
tion of y; by Gram-Charlier expansion {15] (up to the
4th-order cumulant). Then the marginal entropy H{y;)
can be approximated by (see [7] for the detailed deriva-
tion)

2
Kq.4 1 4
z 4l T 160

H(y) = %log 2re — (10)

where #4; i8 the kurtosis of y; defined by
rag = E{lul'} - 2E{|:I*} — E{yi}. (11)
Note that the approximation of H(y;) is made for stan-

dardized variables (i.e., zero mean and unit variance).
Since optimization has to be done under the constraint
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E{Jyi|*} = 1, we add Lagrange multipliers p; in the risk
function (6), then the resulting risk function B{W) is

3 2
40 Ry

h(w) = 7. 41

33 A} - 1), (12)

We apply the natural stochastic gradient descent [I]
which has been shown to find steepest descent direction
in Riemannian manifold (see [7] for detailed deriva-
tion). Then, the updating algorithm for W has the
form

AW = {1+ Tyy" ~Tf(y)y"1W, (13)

where I’ and ¥ are nonsingular diagonal matrices whose
ith diagonal elements are -v; and ¢y = y; — p;, respec-
tively. The ~; is defined by

3 1
Y= -‘64.;:{‘1!94," - a}, (14)

The 1 > 0 is a learning rate. The nonlinear function
f(¥) is a elementwise function which is given by

) = [Aln) - falyn)l”
= [y, |ynl®yn]”- (15)

The adaptation algorithm (13) can be viewed as
Bussgang-type algorithm [12] in spatial domain. For
exainple, if we choose both T' = W = I, then stationary
points of the averaged version of (13) satisfy

E{fily)u;} = E{payi} for i #j, (16)

where x denotes the complex-conjugate. Bussgang-
type algorithms have been widely used for blind equal-
ization in digital communications.

4. COMPUTER SIMULATION

In this computer simulation, we considered three QPSK
source signals and five sensors which are linearly eq-
uispaced with half wavelength separation. Five sen-
sor output signals are mixtures of three QPSK source
signals. FEach source signals were assumed to have
unit variance. The angles of arrival were given by
81 - —100,92 = 45°,93 = 700.

The number of source signals are estimated first
by decomposing the covariance matrix of sensor out-
put signals via SVD. The adaptive algorithm (13) was
applied with constant learning rate n = .005. The ma-
trices T and ¥ were set as I' = I, ¥ = .1I. Additive
white (Gaussian noise was added by SNR=204dB.

As an performance measure, the following perfor-
mance index PT was used. It is defined by

- R

O a0

where gy; is the (4, 7)th element of the global system
matrix G and max; g;; represents the maximum value
among the elements in the ith row vector of G, max; gy
does the maximum value among the elements in the ith
column vector of G. When perfect signal separation
is carried out, the performance index PI is zero. In
practice, it is very small number.

Figure 1 shows five sensor output signals which are
linear instantaneous mixtures of three source signals.
Three recovered signals are plotted in Figure 2 over
the duration [3000,5000]. Performance index is shown
in Figure 3.

5. CONCLUSIONS

We have presented a new computationally efficient blind
signal separation algorithm. The algorithm has been
derived from an information-theoretic approach using
the natural gradient. The proposed algorithm was suc-
cessfully applied to the problem of blind beamforming.
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Figure 1: Five different sensor output signals,
xl(t),‘ “a ,Is(t).

Figure 2: Three recovered signals, 3 (1), y2(t), and
ys(t).

_ puwroheces

Figure 3: The performance of the adaptation aigo-
rithm.
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