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Abstract - This paper has a dual purpose. First, we consider a relux-
ation algorithm which seems to be particularly suitable for multicasting
routing problems. We show that the algorithm has polynomial complexity.
Second , 10 measure the quality of solutions in comparison to the optimal
solutions over a wide range of network sizes for which the computation
of the aptimal costs is too excessive, we also propose a random graph
generation scheme in which an asympiotic lower bound on the expected
optimal cost can be computed as a function of network node size.

1 Introduction

Multicast is a communication in which message streams generated
by a single node (source) are concurrently distributed to more than
one nodes (destinations). To support this type of communication,
the network should be equipped with an efficient routing function to
establish a corresponding point-to-multipoint connection for each
multicast. One of the important issues is to configure the topology
of connection so that the network resource utilization is optimized
and user QoS requirements are satisfied in accordance with some
pre-defined routing goals. If the routing goal is to optimize the
bandwidth utilization, the routing problem is typically formulated
as the minimum cost Steiner tree problem.

Asreal-time multimedia services are expected to be popular in the
emerging BISDNs, to guarantee QoS requirements is an important
issue. In this context, additional constraints may be imposed on
the min-cost Steiner tree problem to guarantee that the sum of the
delays along the path between the source and each destination is no
greater than a predetermined value. We will refer to this problem as
delay- constrained minimum-cost multicast-routing problem with
dynamic membership (DDMP).

There have been some studies on computing the multicast tree for
the multicast routing with dynamic membership but without delay
considerations [2]. An important observation in these studies is
that when a destination joins the current multicast, a good routing
solution can be obtained simply by connecting the destination to the
tree by a minimum cost path between the tree and the destination.
This approach has a special advantage of minimizing disruption
to on-going session. As an analogy, we can think of a routing
algorithm for DDMP in which a new destination is connected the
current multicast tree via a minimum cost path so that the delay
bound is satisfied between the source and the joining destination.

Thus in such a routing algorithm it is critical to develop an

*Dept. of Industrial Eng., Scoul National Univ., Seoul, Korea.

tSchool of Business, Chung-Ang University, An-sung-gun, Kyung-gi-do,
456-756, Korea, tel: +82-334-70-3214, fax: +82-334-675-1384, e-mail:
sphong @cau.ac.kr ’ )

Dept. of Industrial Eng., Scoul National Univ., Seoul, Korea.

efficient algorithm finding a delay-bounded minimum cost path
between a new destination and the current tree. In this paper,
we consider a heuristic proposed in [1] (will be referred to as
Heuristic BG) which can be interpretated as a pragmatic variant
of theLagrangian relaxation method. Although the experiments
reported in {1] are only preliminary to demonstrate its empirical
efficiency, it has a unique multiplier update rule which appears to
be particularly suitable for our purposes. It is based on a simple and
pragmatic idea, not only rendering computational efforts minimal
but also making implementation easy. In this paper, it is shown that
the heuristic is, in fact, a polynomial algorithm.

In the literature, for purposes of evaluation of routing algorithms,
the random graph called Waxman’s network which is of standard use
to simulate the real computer networks. we propose a generation
scheme for the Waxman’s network in which an asymptotic lower
bound of the expected optimal cost can be computed as a function of
network node size. Hence we can evaluate the quality of solutions
a proposed algorithm in comparison to the optimal solutions over
a wide range of network sizes for which the computation of the
optimal costs is too excessive,

2 Heuristic BG

Consider anetwork G = (N, E) in which each link (i, 7) is assigned
two parameters, a cost ¢;; and a delay d;;. Let s, t € N be a pair of
nodes. Then the problem is to find an s-t path P* so that the cost
of P*,c(P*)=Y (i.jyep Cij is minimized while the delay of of
P*,d(P*) =} ; jjep- dij is no greater than some bound A. This
problem is known to be NP-hard.

Now we describe Heuristic BG. Let A be any shortest path algo-
rithm. '

Algorithm 2.1 Heuristic BG [1]

Step 1: Using Afindan s-t path Q so that c(Q) = X ; jyeq Cis IS
minimized. If d(Q) < A, then Q is an optimal solution. Stop.

Step 2: Using A find an s-t path S so that d(S)is minimized. If
d(S) > A, then there is no solution. Stop.

Step 3: Ser a + ¢(S) — ¢(Q), B + d(Q) — d(S) and v +
d{Q)c(S) — d(S)c(Q). Compute e;; «ad;; + Beij for each
(i,j) € E. Using A find an s-t path R so that e(R) is
minimized.

Step 4: Ife(R) = vy and d(R) < A, then output R as the solution.
Ify=e(R)and d(R) > A, then output S as the solution,

Step 5: (Case 1) Ife(R) < yand d(R) < A, thenset S + R.
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Figure 1: Main iteration of Heuristic BG.

Step 5: (Case 2) Ife(R) < yandd(R) > A, thensetQ +~ R. Go
10 Step 3.

The idea of Heuristic BG is best illustrated on the two-
dimensional plane whose horizontal and vertical axes correspond
to the values d{P) and c( P), respectively, for each s-t path P. (See
Figure 1). Thus geometrically, the problem is to find a point lying
in the left side of the dotted line (representing the delay bound)
which is also as close as possible to the horizontal axis. The algo-
rithm initially computes two s-t paths, one with the minimum cost
and the other with the minimum delay. Clearly, these paths can be
computed by applying a shortest path algorithm to ¢ and d. These
amount to two pushes in the plane: the push vertically downward
and the push horizontally to the left. Let the paths be Q and S
respectively as in Figure 1.

In the next step, we push in the direction orthogonal to the straight
line, £ intersecting (the points corresponding to) @ and S. This
means that two s-t paths are considered indifferent if they are on
a straight line parallel to £. Also this amounts to minimize the
function e(P) = ad(P) + Bc(P) which is a linear combination
of two parameters, cost and maximum delays, where a = ¢(S) —
¢(Q) and 8 = d(Q) — d(S). Notice that this is also can be done by
applying shortest path algorithm. Now let R be an obtained path.
Then there are two possible cases: R satisfies the delay bound or
not, depending on its relative position to A as in Figure 1.

If R satisfies the delay bound, then in the nextiteration we pushin
the direction orthogonal to the line intersecting @ and R. (See case
1 in Figure 2.) In other case, push direction is set to be orthogonal
to the line intersecting R and S. (See case 2 in Figure 2.) Thus in
the former case, because R satisfies the delay bound, we multiply
larger weight, that is, to place more emphasis on the cost side in
minimization, so that the push direction becomes more vertically
downward than in the latter case. And vice versa. Thus the push
direction (or multipliers) is updated based on three current solutions,
Q, Rand S. After R replaces S or @ depending on the cases, we
repeat this until we get no improvement in e minimization.

The algorithm has quite pragmatic feature rendering the required
iteration minimal. In fact it can be shown that the algorithm has a
polynomial complexity.

Theorem 2.2 Assume that for each solution P, the input sizes of
¢(P) and d(P) are bounded by a polynomial function p(I) of the
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Figure 2: Adaptiveness of subsequent iterations.

S

Figure 3: Reduction of search area.

input size of the problem. Then Heuristic BG terminates in polyno-
mial, O(Max(log C,log D,log n) + O(p(I)) number of iterations,
where C and D are the largest absolute values of two parameters,
respectively, and 2n is the number of all parameters.

Proof: Consider Figure 3. After we initially get @ and § we
see that there is no s-t path outside the triangle AQS because of
the minimality of @ and S with respect to ¢ and d respectively.
Similarly due to the minimality of R, there can be no path closer
to the origin than the straight line intersecting M and N. Thus so
far the search region has been reduced to the polyhedron MQSN.
Then depending on the relative position. of R to A, the direction
of minimization is determined. Say the direction is orthogonal to
the line intersecting @ and Rin the next iteration as R satisfies the
delay bound A. Then we see that the search region is reduced
further to QRM. Hence after the first main iteration involving e
minimization the area of search region is reduced at least by half.

By an inductive argument, it is easily seen that this is also the case
in any subsequent iteration. Thus search area reduces exponentially.
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To establish the polynomial bound, it remains to show that before
the termination, the area of the remaining search region can not
get too small, namely no less than 2=P(7), where p is a polynomial
function and [ is the input size of the problem.

To show this we can rely on the following well-known fact :

Theorem 2.3 Let A € R™*". Suppose the polyhedron TI =
{z|Az < b} is bounded and full-dimensional. - Denote by p be
an element of A or b with the maximum input size. Then the volume
of ILis no less than 2=4""#,

By induction, it is easy to show that the remaining search region
after each iteration is the polytope defined by three halfspaces:

aiz+ By >m 2.1

a2+ By 212
a3 + Bay < s,

where, all the coefficients are nonnegative. Since the hyperplanes
(straight lines) defining the halfspaces never coincide, the solution
set, if not empty, necessarily has an interior except the case when
the corresponding hyperplanes intersect at a single point. But then
the algorithm immediately terminates in the following iteration as
it can not achieve any improvement in e-minimization. Thus before
the termination of the algorithm, a nonzero area of the polytope,
by Theorem 2.3, can not be smaller than 2-CU"), where I' is
the maximum value among input sizes of the coefficients in Eq
(2.1). But the coefficients of Eq (2.1) are either ¢(S’) — ¢(Q’),
d(Q') — d(S5"), or d(Q")c(S’) — d(S")c(Q'). By the assumption,
I' = O(p(I}).

Hence the number of iterations is bounded by

log(Area of AQS/2-0(1)))
< log(d(Q) — d(S))(e(S) - c(Q)) + O(p(D))
< log d(Q)e(S) + O(p(I))
< log(nC)(nD) + O(p(I))
O(Max(log C,log D,log n) + O(p(I))

2.2)

Therefore, the theorem follows. O

3 Waxman’s Network

The Waxman’s network is a random graph frequently used for
evaluation of multicast routing algorithm in the literature. {2]. The
n nodes of the network G are randomly selected from an L x L
square lattice points with unit spacing. For each pair of nodes u
and v, the edge (u, v) is chosen with the probability,

—6(u,v)
2aL

where §(u, v) is the Manhatran distance (i.e. the rectilinear distance
) between u and v. The parameters § and a are chosen from the

Pr(u,v) = Bexp (3.3)

interval (0,1). If a is large, longer edges have more chance to
exist and hence the connectivity of the network is increased. By
increasing 3 we can uniformly increase the density of the network
instances.

For each instance, the members M, namely, the source r and the
destinations D are randomly chosen from the nodes. To complete
the instance generation, two parameters, the cost and delay need
to be assigned to each edge of the network instances. It seems
natural to make the delay of an edge to be positively correlated to
the geographical distance of its end nodes. In this sense the delays
are generated to be 6(u, v) times 1 + w, with w a random number
from [0, 1]. There are two ways to generate the cost in terms of its
sign of correlation to the delay: positive or negative. Regarding the
algorithm performance, the correlation between two parameters is
a critical factor. If two parameters have the positive correlation of
a significant level, the instances should be relatively easy to solve,
since it is more probable that minimizing one parameter produces
a path also better off in the other one. We call this a positive
correlation effect. If they have a negative correlation, the situation
becomes opposite to have a negative correlation effect. The most
difficult case is when the correlation coefficient is -1 so that the
delay and cost are of completely inverse relation. Then a path
minimizes the cost will always have a maximum delay. So such a
network is most difficult to solve. In our experiment, the routing
algorithm is simulated on two groups of instances.

Theorem 3.1 Suppose L = \Vkn for some constant k. Then the
expectation, &*(n) of the optimum value of in the positively corre-
lated instances is Q(n). In the negatively correlated instances, on
the other hand, c*(n) is Q(n?).

Proof : Clearly for each instance, &*(n) is not less than the
number of members x the expected minimum edge cost. Since the
number of members is proportional to n, the theorem will follow if
we show that the expected minimum rectilinear distance of existing
edges is (1) and Q(+/n) for the instances with positively and
negatively correlated parameters, respectively.

In the case of instances of negatively correlated parameters, ¢,
= 4L - é(u,v) x (1 4+ w) with w a random number from {0, 1].
Hence the expected minimum cost is 4L —1.5 x the expectation
of the maximum rectilinear distance of existing edges which is not
greater than 2L. Thus the expected value of a minimum cost is at
least L hence Q(/n).

To complete the proof for the instances with positively correlated
parameters we need the following lemma.

Lemma 3.2 Suppose L = Vkn. If n nodes are randomly chosen
among Lx L square lattice points of unit spacing. Then the expected
value dpmin Of the minimum rectilinear distance between pairs of
nodes is (1).

Before proving Lemma 3.2, let’s see why the expected minimum
rectilinear distance of existing edges is £2(1) for the instances with
positively correlated parameters if Lemma 3.2 holds.

Recall that ¢, = §(u, v) x (14 w) with w arandom number from
[0,1]. Hence the expected minimum cost is 1.5 x the expectation
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Figure 4: Equi-distance points w.r.t point A and B.

of the minimum rectilinear distance of existing edges. Between a
node pair (u, v), the connecting edge of rectilinear distance 6(u, v)
exists with the probability given by Eq (3.3) which is,

—4(u, v).

3.4
2avkn 34

Pr(u,v) = Bexp

Thus obviously the minimum rectilinear distance of existing
edges connecting node pairs is not less than the minimum recti-
linear distance 4,,,;,, between node pairs. Thus it suffices to show
that 8, is Q(1).

Proof of Lemma 3.2

As described above n nodes are randomly chosen among L x L
square lattice points with unit spacing as Figure 4.

To compute d,,;,, we fix the position of a node, say v arbitrarily
chosen among the n nodes. Suppose v is on a corner point of the
lattice as A in Figure 4. The lattice points on the solid parallel
lines represents the set of points which are at the same rectilinear
distances from v at A. Let these sets be Sg, S1, S2,+++, Sr—1, S¢L,
Si+1, *++, So in the ascending order of distances. Then the sizes
of the setsarel,2,3,---,LL+1L,---, 1, whichis a concatenation
of two sequences of equal differences. The probability that a node
is among such points are 7z, 7, 75, -+ 15 S5 200 11

Now we compute the expected value, 8,,;,,(A)of the rectilinear
distance of a nearest node from v at the point A. For a nearest node
to be at a point in Si, all n — 1 nodes other than v must belong to
U;>1S; but some nodes need to be in Si.. Thus the probability that
anearest node fromvtobein S (A =1,-.-,2L)is,

pi = Pr{all the n — 1 points arein U;>r S} (3.5)
— Pr{all the n — 1 points are in U;>441 Si}

k-1 n-l k n-1
=(1—Z|S,~I/L2> —(1—EIS;I/L2) ,

where, S21+1 is defined to be empty set.

Thus the expected value of of the distance from v to a nearest
point is,

L
Zi:l kpk

=1x ((1- = )" - (1-L )"

(3.6)

)
s ((1- Sl ) - (1-sL8)")
+3x ((1—Z?=o )" - (1-Tho )H)

+L=1)x
(-5 8) ™ - (-5 )™
senx ((1-i )"
= (T )T (Tl )
o (1-TET )T (-2
> (1- T8, 5)™
o

)

1

(1-
(1-

= (-2 -

-

o N m- -

t

Thus, when a node is on the corner of the lattice, the rectilinear
distance to a nearest point is 2(1).

Let’s consider the case where the node v is at a more general
position like e.g. the lattice point B in Figure 4. The lattice
points which are at the same rectilinear distances from B form the
sets represented by broken lines. While in the previous case, the
sequence of equequi-distanceidistance set sizes is a concatenation
of two sequences of equal differences, in this case it consists of
at most five different sequences of equal differences. To compute
these sequences we need to elaborate the arguments by considering
the relative position of v in the lattice.

But the point is that an essentially same arguments as Eq (3.6)
also applies to this case to derive a asymptotical lower bound on the
minimum distance and the bound is the same as in the previous case
up to a constant factor. Therefore the expected value of minimum
distance 6,,:n is again 2(1). Hence the lemma follows. O

References

(1] D. Blokh and G. Gutin, “An approximation algorithm for
combinatorial optimization problems with two parameters,”
submitted for publication 1995.

(2] B. M. Waxman, “Routing of multipoint connections,” in
IEEE J. Select. Areas in Commun. 6(9):1617-1622, 1988.

—400 -



