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Abstract

This research broadens the prime concern of nuclear power plant operations from safe performance to
both economic and safe performance. First, emergency diesel generator is identified as one of main
contributors for the lost plant availability through the review of plant forced outage records. The
Jframework of an integrated architecture for performing modern on-line condition for operational
availability improvement is configured in this work. For the development of the comprehensive sensor
networks for complex target systems, an integrated methodology incorporating a structural hierarchy, a
Sunctional hierarchy, and a fault-symptom matrix is formulated. The second part of our research is
development of intelligent diagnosis and maintenance advisory system, which employs Bayesian Belief
Networks (BBNs) as a high level reasoning tool for incorporating inherent uncertainty for use in
probabilistic inference. Our protolype diagnosis algorithms are represented explicitly through
topological symbols and links between them in a causal direction. As new evidence from sensor network
developed is entered into the model especially, our advisory system provides operational advice
concerning both availability and safety, so that the operator is able to determine the likely failure modes,
diagnose the system state, locate root causes, and take the most advantageous action. Thereby, this
advice improves operational availability.

I. Introduction

Nuclear power plants employ a large amount of alternating current (AC) electric motor-driven
equipment. AC electric power also is used for a number of other applications that are important to plant
operation and safety, such as instrumentation, control, and battery charging. When normal AC power
from the offsite utility distribution network or from the plant main generator is unavailable, then a reliable
backup source of power is needed in order to supply necessary power to safety-related equipment.
Emergency diesel generator (EDG) units are usually used as backup sources. Due to their safety
importance, there has always been a need to monitor the performance of the EDGs, and the plant
unavailability experience in PWR in the United States shows that the EDG is one of major systems
causing forced outages[1][2].

There is a strong interest in implementation modern condition monitoring. The capability to provide
early detection of component deterioration is an essential part of any effective predictive maintenance
program. In addition, there are a growing awareness and use of operator advisory systems based upon
artificial intelligence (AI) to model, analyze, and diagnose critical plant equipment. It is in this context
that the techniques now available and the state of the art movement toward on-line intelligent condition-
based monitoring, diagnosis, and maintenance are investigated. Thus, it is the aim of our work to
describe the state of development for the condition monitoring and diagnosis. Our work focuses on the
condition monitoring and diagnosis of equipment and the development of intelligent systems to integrate
process control with condition-based maintenance in order to achieve improved operational availability.

The work comprises two major parts for plant availability improvement : 1) a modern on-line
condition monitoring system is developed for early fault detection in complex machines, and 2) by

—264—



assuming there are valid sensor readings available throughout the sensor validation advisory system, an
advisory system for intelligent diagnosis and maintenance is developed.

II. Identification of Major EDG Failure Modes

Three databases are used here to identify the major failure modes of the EDG : the NRC database,
NPRDS, and the EPRI database[3].

First, the NRC database covering failures occurring during the interval 1993 to 1995 is used to select
the EDG as one of our target systems. But a majority of failure records either do not have a failure
description or do not have identified failure causes and affected failure modes. This makes the limited
available records even more inadequate for identifying the main failure modes of the EDG. Next, the
NPRDS is mainly used to identify the major observed failure modes and their root causes. Among the
failure records in the NPRDS we selected such failures for monitoring that frequently occurred and
caused high forced outage times. Finally, the EPRI database is used to supplement NPRDS. From the
EPRI database we investigated some failures and their root causes. We selected those shown in the
NPRDS set having some importance.

III. Development of Sensor Network

3.1 Structural and Functionsl System Hierarchy

A structural and functional system abstraction methodology[l] was developed for purposes of
reducing the effective complexity of the EDG system without neglecting the major features of the
system’s behavior and composition and then for determining the parameters and locations being
monitored. This methodology is based upon a hierarchical decomposition of the complex systems under
consideration. Each system is modeled by viewing it both as a structural hierarchy and functional
hierarchy. This is why the determination of monitoring parameters is directly associated with both the
system composition and function.

Based upon the presented methodology, the structure-based hierarchy (SBH) and the function-based
hierarchy in the EDG have been applied to lubrication oil system, cooling system, fuel oil system, and
engine mechanical system. The materials used for this work include the fault tree of EDG, the NRC
database, and NPRDS. Examples of the two decompositions are shown in Figures 1 and Figure 2.

3.2

Each level of failure modes in the function-based hierarchy (FBH) has its own characteristics, which
are indicated by the variations of process parameters and system status parameters. The accumulated
expertise obtained from operational experience enables us to select a proper set of monitoring parameters
for each failure mode. The fault symptom matrix for the is introduced for the ease of monitoring
parameter determination. The monitoring parameters are determined in the fault symptom matrix and
are used to determine the corresponding needed sensor types

3.3 Recommendations of New Sensors for EDG Use

The listed sensors shown in Table 1 are ordered based upon the rank order of the related failures
according to their contributions to lost availability. From the point of availability improvement such
sensors as are related to a high rank of lost availability should be considered for use first. However,
some sensors are related to more than one faiture, and most failures need to be monitored by several
sensors. That situation makes it difficult to recommend one sensor for use over all others. Rather, we
grouped the sensors according to their system and gave a rank according to the order of unavailability of
that system. Then, within each group we ranked the sensors according to their relative value in detecting
incipient failures.

IV. Prototype Diagnostic Network for the EDG
The proposed diagnostic network for the EDG in the advisory system is presented. We divide the
EDG into five modules, for convenience. They are the lubrication oil system, fuel oil system, cooling

system, start air system, and engine mechanical system. The principle and structure of the advisory
system are illustrated by their corresponding Bayesian Belief Networks (BBNs){4]{5][6].
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4.1 Lubrication Qil System

The lubrication oil system consists of six basic nodes: F LO Lk, F LO Pp, F LO Fil Plug,
F LO_Str Plug, F LO Low Pr,andF CC _Low_LV. This system is shown in Figure 3.

The F_LO_Lk node describes lubrication oil leakage. The leakage is detected using the sump level
and sump pressure sensors. The F_LO_Pp node describes the pump states. The pump states are
determined by the pump motor current and pump discharge pressure. The F_LO-Fil Plug and
F_LO_Str_Plug nodes represent the lubrication oil filter and strainer conditions. These are determined
by differential pressure sensors sensing the pressure difference across the filter and strainer. The
F_LO_Low_Pr node represents the state of lubrication oil pressure. This parameter is affected by
lubrication oil leakage, pump state, lubrication filter and strainer conditions. Also, the sump pressure
sensor indicates the pressure. Finally, the F_CC_Low_Lv node describes the oil level of the crankcase.
It is affected by the lubrication oil pressure state and is detected by the crankcase pressure and crankcase
level sensors.

4.2 Fuel Oil System

The fuel oil system consists of six basic nodes: F FO Lk, F T Fil, F_P Fil, F_S Fil, F_FO_Pp
and F_Check _Vv. This system is shown in Figure 4.

The F_FO_Lk is the node that describes fuel oil leakage. This leakage is detected using tank level
sensors. The F T Fil, F_ P Fil and F_S_Fil nodes represent the filter conditions for the transfer filter,
primary filter and secondary filter, respectively. Fuel contamination and filter conditions are detected by
differential pressure sensors sensing the pressure difference across the fuel filters. The F_FO_Pp node
describes fuel pump states. The pump states are determined by pump motor current and pump discharge
pressure. Finally, the F_Check Vv node represents the check valve states. A check valve abnormality
is detected by a check valve disc position sensor.

4.3 Cooling System ‘

The cooling system consists of three basic nodes: F HEx, F_ AC and F_CS_Lk. This system is
shown in Figure 5. ‘

The F_HEx node represents heat exchanger clogging. This clogging is detected by a coolant
temperature sensor from the heat exchanger. The F_AC node represents aftercooler clogging. This
clogging is detected by the coolant temperature from the aftercooler. The F_CS_Lk node represents the
coolant leakage. This leakage is detected by expansion tank level and coolant system pressure sensors.

4.4 Air Actuated Starting System

The air starting system consists of three basic nodes: F_SA Lk, F MV and F_MA. This system is
shown in Figure 6.

The F_SA_Lk node represents air leakage from the reservoir tank. This leakage is detected by a
pressure sensor at the reservoir tank. The F_MV node represents air leakage from the main air valve.
This leakage is detected by a pressure sensor downstream of -the mail air valve. The F_MA node
represents the concentration of moisture in air. The moisture is detected by a moisture sensor at the
reservoir tank.

45

The engine and mechanical system consists of five basic nodes: F_Blowby, F_RockerArm,
F CC_High Pr,F TCandF_TC_Br. This system is shown in Figure 7.

The F_CC_High_Pr node describes crankcase high pressure. The crankcase pressure is measured
with a pressure transducer. This problem can be caused by blowby, F_Blowby, and can be monitored by
a vibration sensor according to the crank angle. Rocker arm failure, F_RockerArm, can cause
temperature to rise in the exhaust outlet flow and can be monitored by a temperature sensor. Impending
turbocharger failures, F_TC, that do not yield an increase in the vibration level can be identified through
changes in the normal temperature levels or temperature changes across the turbine or compressor.
Thermocouples can be used to monitor these temperatures. Bearing failures, F TC_Br, can be detected
by monitoring the turbocharger lubrication oil temperature and the vibration level of the turbocharger

4.6 ise-

Expertise-Based Knowledge Implementation in the BENs
In order to make our HUGIN models work as expected, we have acquired relevant EDG monitoring
and diagnosis to obtain the correct quantitative conditional probability values in our HUGIN model.
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Information that is needed includes the bounds of sensor ranges, actions that can be taken to mitigate
stimulation of the various failure modes, and conditional probability values.

We obtained needed expertise from interviews with power plant system engineers. Currently, on-
line monitoring techniques being used for EDGs in power plants are very limited. Condition monitoring
of the EDG has mainly been based on off-line monitoring techniques, most of which can also be realized
by the corresponding on-line monitoring systems incorporated in our proposed sensor network. From
our interviews, the expertise obtained reflects current practices for using off-line monitoring. Data for
advanced or new on-line monitoring sensors should be studied further as the needed experience is
accumulated.

V. Implementation of BNN Advisory System

There are three modes in the advisory system : the advisory, the diagnostic and the predictive modes.
In the advisory mode the sensor outputs are known, and the probability distribution of the failure modes
and the expected utility values of the alternative actions are estimated. These estimates indicate to the
operation the likely most advantageous action to take[6].

In the diagnostic mode, the advisory systems uses knowledge of the highest level failure mode state
and the sensor outputs. The purpose of this mode is to obtain the probability distributions of the
subordinate failure modes. This estimate of the most likely subordinate failure mode states is useful in
diagnosing the cause of the observed failure, as a basis for planning the needed component recovery
actions.

In the predictive mode a particular action in known to have been taken. The purpose of this mode is
to estimate the probability distributions of the failure mode states and the sensor reading states. This
mode is useful in a forward-looking fashion by indicating to an operator the likely subsequent failure
mode state and sensor ouput distributions when a particular action is taken. such estimates provide a
basis for comparison of the actual component and sensor set performance to the estimations of the
advisory system. Large persistent divergences between the two would indicate that the advisory system
is in error for some reason. The need for corrective investigation would be indicated.

When actions are taken, the failure state probability distributions are changed. Also, their likely
subordinate sensor readings will reflect the new failure state probability distributions. In this mode the
action taken is given as inputs and the probability distributions of the sensor readings are estimated.

VI Conclusion and Discussions

So far, existing practical monitoring systems have been designed mainly emphasizing improved safety.
In them, their corresponding safety related operational procedures are usually computerized by a set of
production rules in the form of rule-based advisory system which usually deals with straightforward
deterministic problem solving domains or stochastic problem solving domains supplemented by use of an
uncertainty factor.

The work reported here broadens the prime concern of nuclear power plant operations from safe
performance to both economic and safe performance through on-line monitoring and advice. Thus, our
work is concerned with the advanced design and development of comprehensive sensor networks and
new advisory systems in order to improve the operational availability of the EDG. The suggested
integrated architecture utilizes comprehensive sensor networks and advisory systems using the Bayesian
belief network (BBN) treatment.

For the development of the comprehensive sensor network used for complex systems, the work
reported here formulates an integrated method incorporating a structural system hierarchy, a functional
system hierarchy, and a fault-symptom matrix. The application of this integrated method to EDG has been
judged to be systematic and appropriate as the result of discussions with system experts.

The work reporied here is also concerned with the development of intelligent diagnosis and
maintenance advisory systems. There are complexities and uncertainties inherent in such intelligent
diagnosis and maintenance. Thus, our advisory system employs a Bayesian Belief Network (BBN) as a
high level reasoning tool for incorporating inherent uncertainty for use in probabilistic inference. Keeping
with the treatment of rule-based expert systems, we conclude that BBNs are far superior to the rule-based
approach in their ability to treat modeling of complexities, uncertainty management, systematic decision
making, inference mechanisms, knowledge representation, and model modification for newly acquired
knowledge. The prototype diagnosis and maintenance algorithms used are represented explicitly through
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topological symbols and links between them in a causal direction. The output of this network is a
diagnostic mapping from sensor readings to a determination of the likely failure mode state or system
states. The inference schemes used in calculate the updated probability distribution of alternative
component failure states. This probability distribution is then used for making decisions about taking
corrective actions. This capability is routinely improved as new evidence is entered into the model.

In conclusion, the advanced design and development of comprehensive sensor networks and Bayesian
belief network based advisory systems can lead to the improved plant operation in new power plants, such
as is envisioned for the Korea Next Generation Reactor (KNGR).

Needed future efforts include the four items listed below. These are either extensions of this study or
efforts needed to complete the study.

First, several essential features should be incorporated for actual applications of our advisory system
to practical tasks in nuclear power plants. The sensor validation advisory system should configure on-
line validated data files for use in our advisory system. Also, the real-time capability of retrieving and
plotting sequential trends using modern graphics are suggested in order to assist the operator in
diagnosing a situation as it evolves.

Second, conditional probability values and utility values used in the knowledge base required for the
Bayesian belief network based advisory system were elicited through discussions with relevant experts.
However, concerning new sensors, recommended in this study, there is insufficient expertise available for
computing conditional probability values. Thus, another future effort that could be that of extension
from this study is to synthesize newly acquired knowledge concerning new sensors and their
corresponding component failure mode states. Furthermore, familiarity with Bayesian Belief network
concepts of the operator can enhance the robustness of the advisory system.

Third, currently our advisory system operates only statically giving advice based upon the current
state of the monitored system. It does this without considering the pervious system status. This means
that its reasoning starts when all the manifestations of abnormal signals are present at such unique time.
However, as the sensor output changes dynamically over a time interval, the resulting corresponding
failure mode distribution will also change. Thus, the dynamic relationships of the failure mode states and
the sensor signal states could be formulated to reflect behavior during a specific time interval. The study
on this temporal reasoning process, which depends upon the notion of the time dependence of the system
states, could be a valuable future effort.

Lastly, rigorous, extensive testing and validation are essential concerning the adequacy and
completeness of our advisory system. In particular, the field tests are recommended as a practical way
to ensure that the advisory system can perform as intended in the actual environment. This could
perhaps be performed initially using specialized testing devices such as a plant simulator.
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Table 1. Sensor Selection Priority List of the EDG

Monitoring Location Sensor

Monitoring Location

Sensor

1. Engine Mechanical Failure

w

Fuel Oil System Failure

Cylinder vribvation sensor

1 | Cylinder according to crank angle

1 | Fuel Transfer Filter

Differential pressure sensor

2 | Crankcase Pressure Sensor

2 | Fuel Primary Filter

Differential pressure sensor

3 | Exhaust Outlet ‘Temperature sensor

3 | Fuel Secondary Filter

Differential pressure sensor

Turbocharger
4 Compressor and Turbine Temperature sensor
5 Turbocharger Temperature sensor

Lubrication Oil Channel

4 | Fuel Transfer Pump

5 | Fuel Transfer Pump

Motor current sensor

Discharge pressure sensor

Turbocharger Vibration sensor

6 | Fuel Storage Tank

Level sensor

Lubrication Qil System Failure

7 | Fuel Day Tank

Level sensor

1 | Lubrication Oil Sump Level sensor

8 | Check Valve

Direct current IVMS
(inductive valve motion
sensor)

2 | Lubrication Oil Sump Pressure sensor

4. Start Air System Failure

3 | Lubrication Oil Filter Differential pressure sensor

1 | Start Air Reservoir Tank

Pressure sensor

4 | Lubrication Oil Strainer | Differential pressure sensor

2 | Main Air Start Valve

Pressure sensor

5 | Crankcase Oil level sensor

3 | Start Air Reservoir Tank

Moisture-in-air sensor

6 | Lubrication Oil Pump Motor current sensor

5.  Cooling System Failure

7 | Lubrication Oil Pump Discharge pressure sensor

1 | Coolant Expansion Tank

Level sensor

8 | Lubrication Oil Heater Temperature sensor

2 | Coolant Channel

Pressure sensor

Lubrication Oil Heat

9 Temperature sensor 3 | Radiator Temperature sensor
Exchanger
4 | Heat Exchanger Temperature sensor
5 | Aftercooler Temperature sensor
Cooling System Cooling System Failure
SUBSYSTEM Cooler Cooling Line SYWPEM High Coolant Temp Coolant Leakage
L . Heat
. Heat After- Coolant Expansion FAURE  Radiator Aftercooler Coolant  Exp. Tnk
Radiator Exchanger cooler Channel  Tank MIE Fouling }]‘E())‘:]lllng Fouling Level Level
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Figure 1.  Structure-Based Hierarchy for Cooling System Figure 2. Function-Based Hierarchy for Cooling System
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Figure 4. Prototype Diagnostic Network for the Fuel Oil System Figure 5. Prototype Diagnostic Network for the

Engine Cooling System

TR

Figure 6. Prototype Diagnostic Network Figure 7. Prototype Diagnostic Network for the Air Actuated Starting

for the Air Actuated Starting System System
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