Proceedings of the Korean Nuclear Society Spring Meeting
Seoul, Korea, May 1998

Mathematical Verification of A Nuclear Power Plant Protection System
Function With Combined CPN and PVS

Seo Ryong Koo, Han Seong Son and Poong Hyun Seong

Korea Advanced Institute of Science and Technology
Department of Nuclear Engineering
373-1 Kusong-dong, Yusong-gu
Taejon, Korea 305-701

Abstract

In this work, an automatic software verification method for Nuclear Power Plant (NPP) protection
system is developed. This method utilizes Colored Petri Net (CPN) for modeling and Prototype
Verification System (PVS) for mathematical verification. In order to help flow-through from modeling by
CPN to mathematical proof by PVS, a translator has been developed in this work. The combined method
has been applied to a protection system function of Wolsong NPP SDS2(Steam Generator Low Level Trip)

and found to be promising for further research and applications.

L. Introduction

In this work, an automatic. software verification method for Nuclear Power Plant (NPP) protection
system is developed. This method utilizes Colored Petri Net (CPN) for modeling and Prototype
Verification System (PVS) for mathematical verification.

For the safety-critical protection systems, complete analysis of the system is needed since an error in
the requirements may generate serious faults of software. CPN has been used as an adequate tool of
requirement analysis. [1] CPN has some advantages such as rapid prototyping and visualizing of
requirements. However, CPN is not proper for the mathematical verification of the system. In this work,
therefore, PVS is used for the mathematical verification.

In this work, first, the relevant matters of Steam Generator Low Level Trip (one of the Wolsung NPP
SDS2 parameter) are modeled with Design/CPN. This model offers an advantage to the verification
process in that the easy communication between users and system developers is possible. Next, PVS
specification, which is translated from CPN model, is verified mathematically. The focus in this work is
on the flow-through from CPN model to PVS specification and a translator has been developed. The

translator, developed in this work, is one of the most important parts in this work.

—-315—

II. Design/CPN and PVS

Petri Net is a modeling language that has been used in modeling and for analysis of the system. CPN
has expressions of concurrency and formal semantics. In addition, Petri Net can visualize the actual
system with ease. However, Petri Net is so basic that the ability of expression is limited and CPN has
been developed to overcome this limit. In CPN,‘ color refers to the types of data associated with tokens
and is comparable to data types in programming languages. Design/CPN is a powerful tool for the
Colored Petri Net. The version of CPN used in Design/CPN incorporates variables (representing the
binding of identifiers to specific colored tokens), arc inscriptions (expressions), and the code associated
with transitions. In Design/CPN, CPN is a graphical pmgrannniné language with rich specification and
simulation possibilities. The programming language through which CPN specifies desired operations in
arc expressions and transition codes is ML. ’ '

A non-hierarchical CPN is defined as a many-tuple. However, it should be noted that the only purpose
of this is to give a mathematically sound and unambiguous definition of CPN and their semantics. It is in
principle easy to translate a CPN diagram into a CPN tuple, and vice versa. The tuple form is adequate
when we want to formulate general definitions and prove theorems which apply to all of CPN. The graph
form is adequate when we want to construct a particular CPN which models a specific system. Also we
investigate the relationship between non-hierarchical CPN and Place/Transition Nets(PT-nets), and it
turns out that each CPN can be translated into a behaviorally equivalent PT-net, and vice versa. The
translation from CPN to PT-nets is unique, while the translation in the other direction can be done in
many different ways. The existence of an equivalent PT-net is extremely useful, because it tells us how to
generalize the basic concepts and the analysis methods of PT-nets to non-hierarchical CPN. [1]

One example Design/CPN model is shown in Figure 11.1. In this F igure, the CPN model represents the
Wolsung NPP SDS2 function (Steam Generator Low Level Trip).

PVS is a verification system: an interactive environment for writing formal specifications and
performing formal proofs. It builds on nearly 20 years experience at SRI in building verification systems,
and on substantial experience with other systems. The distinguished feature of PVS is its synergistic
integration of an expressive specification language and powerful theorem-proving capabilities. PVS has

been applied successfully to many large and difficult applications in both academic and industrial settings.

Figure I1.1 CPN model of SDS2 Steam Generator Low Level Trip function

-316 -

III. Verification Technique by Relating CPN with PVS

III-1. CPN modeling

In this work, the target requirement is that for the Wolsung NPP SDS2 function (Steam Generator
Low Level Trip). In this requirement, the functional requirements such as f SLLCond, f SLLCondA,
f SLLSnr, f SLLSp, f SLLSpD, and f SLLTrip are included. These functional requirements are modeled
with Design/CPN.

Figure 1I.1 shows the top-level CPN model of the function, and other sub-models are shown in
Figures II1.1 to I11.3

Figure I11.1 FigureIIL.2 Figure 1I1.3
CPN model of f SLLSnr function ~ CPN model of { SLLSp function ~ CPN model of { SLL.Cond function

ITI-2. Conversion to PVS specification language using ML language

It is not meaningless to perform an analysis for each model independently because the analysis of
the system is performed in the “divide and conquer” manner. In Design/CPN, it is impossible to access to
a data structure of the system directly, but the system information can be extracted by using ML program.
That is, Design/CPN has internal functions for asking questions to modeled system. Using this ML
functions and programs, we can extract the required system information from the CPN models. The
extracted information form is shown as follows. Objects for converting in CPN are Place, Port, Transition,

Sub-Transition, Arc, Color, and variable declaration.

Place # (placeid) # (placename) # (colorname) # (initmark) End
Port # (portid) # (portname) # (colorname) # (initmark) End
Trans # (transid) # (transname) # (guardexp) # (codeseg) End
Sub # (subid) # (subname) # (guardexp) # (codeseg) End

Arc # (arcid) # (arcexp) # (from) # (to) End

Def # (declare) End

In PVS, it is hard to verify a system with the above results. Therefore, we need a process that the
results from CPN model are converted to PVS inputs (PVS specification language). This process is
performed with the translator developed in this work.

As mentioned in section II-1, PVS specification language is composed of simple THEORYs.
Therefore, the main page is translated to SLLTrip function THEORY and sub-pages to SLLSnr, SLLSp
and SLLCond function THEORYsS, respectively. Each THEORY is described in the next section.

—-317-

dictionary % [parameters)

variables % [parameters]

SLLTrip % [parameters }

: THEORY : THEORY : THEORY
BEGIN BEGIN BEGIN
% ASSUMING % ASSUMING % ASSUMING
% assuming declarations % assuming declarations % assuming declarations
% ENDASSUMING % ENDASSUMING % ENDASSUMING
time : TYPE = nat IMPORTING dictionary :
m_SGL : TYPE =int % variable declare IMPORTING dictionary
f_FaveC : TYPE = int IMPORTING variables
f Flog : TYPE =int t: time IMPORTING SLLSnr
c¢_SLLSp : TYPE = int si:m_SGL IMPORTING SLLCond
c_SnrCond : TYPE = Snr_trip, s2 :m_SGL IMPORTING SLLSp
Snr_not_trip s3 :m_SGL
¢_SLLCond : TYPE=CondIn, s4 :m_SGL f SLLTrip : THEOREM (IF
CondOut - pow : POWT snrcond=Snr_trip AND slicond=CondIn
c_Trip : TYPE = trip, not_trip pow_log : POWLOGT THEN slitrip=trip ELSE slltrip=not_trip
Cond ABC:TYPE= a.aab, sp:c_SLLSp ENDIF)))
b_b,ab_c sarcond : ¢_SnrCond
Co:TYPE= ab,c slicond : ¢_SLLCond END SLLTrip
prev : ¢_SLLCond
XT : TYPE = [time -> m_SGL] slitrip : ¢_Trip
YT : TYPE = {time -> ¢_SnrCond] x1: XT
POWT : TYPE = [time -> f_FaveC] x2 . XT
POWLOGT : TYPE = [time -> x3: XT
f_Flog] x4 . XT
y1:YT
END dictionary y2:YT
y3:YT
v4:YT
cond_a: Co
cond_l:Co
cond_al : Cond_ABC
END variables
Figure IIL4 Figure IILS Figure IIL6

Specification languagé

of dictionary.pvs

Specification language

of variables.pvs

III-3. Verification and Validation using PVS
This section describes PVS specification converted from SDS2 system models by the translator. The

Specification language

of SLLTrip.pvs

PVS specification is composed of SLLTrib.pvs(Figure 111.6), SLLSnr.pvs(Figure I11.7), SLLSp.pvs(Figure
111.8), and SLLCond.pvs(Figure II1.9) files, named after CPN model pages. The declaration part is

translated to dictionary.pvs(Figure 111.4) and variables.pvs(Figure III:5) files which are imported to the
THEORYs using IMPORTING command.

In this work, the method of verification is the mathematical verification for the converted PVS

specification language. PVS specification language for each page is represented with timed states. Thus,

we have considered that the signal and the power of the system are functions of time. Then, it is proved

mathematically using the PVS proof system.

—-318~

SLLSnr % [parameters] SLLSp % [parameters] SLLCond % [parameters]
: THEORY : THEORY : THEORY
BEGIN BEGIN BEGIN
% ASSUMING % ASSUMING % ASSUMING
% assuming declarations % assuming declarations % assuming declarations
% ENDASSUMING % ENDASSUMING % ENDASSUMING
IMPORTING dictionary IMPORTING dictionary IMPORTING dictionary
IMPORTING variables IMPORTING variables IMPORTING variables
t1 : AXIOM (IF x1(t) <= sp THEN t8 : THEOREM t11 : THEOREM
y1(t)=Snr_trip ELSE y1(t)=Snr_not_trip | (FORALL(t:time):(IF pow(t) <0 THEN | (FORALL(t:time):(IF pow(t)<8 THEN
ENDIF) sp=923 ELSE (IF pow(t)>=0 AND cond_a=a ELSE (IF pow(t)>=8 AND
12 ; AXIOM (IF x2(t) <= sp THEN pow(£)<90 THEN sp=(28*pow(t)+923) | pow(t)<10 THEN cond_a=b ELSE
y2(t)=Snr_trip ELSE y2(t)=Snr_not_trip | ELSE sp=3438 ENDIF) ENDIF)) cond_a=c ENDIF) ENDIF))
ENDIF)
t3 : AXIOM (IF x3(t) <= sp THEN END SLLSp t12 : THEOREM
y3(t)=Snr_trip ELSE y3(t)=Snr_not_trip (FORALL(t:time):(IF pow_log(t)<3299
ENDIF) THEN cond_J=a ELSE (IF
1 t4: AXIOM (IF x4(t) <= sp THEN pow_log()>=3299 AND
y4(t)=Snr_trip ELSE y4(t)=Snr_not_trip pow_log(t)<3349 THEN cond_1=b
ENDIF) ELSE cond_l=c ENDIF) ENDIF))
t10 : THEOREM
(FORALL(t:time):(IF t19 : THEOREM (IF cond_a=a AND
yl(t)=y2(t) AND y2(t)=y3(t) cond_{=a THEN cond_al=a_a ELSE (IF
AND y3(t)=y4(t) AND (cond_a=a AND cond_I=b) OR
y4(t)=Snr_not_trip THEN (cond_a=b AND cond_I=a) THEN
snrcond=Snr_not_trip ELSE cond_al=a_b ELSE (IF cond_a=b AND
snrcond = Snr_trip ENDIF)) cond_I=b THEN cond_al=b b ELSE
cond_al=a_b_c ENDIF) ENDIF)
END SLLSnr ENDIF)
120 : THEOREM (IF (cond_al=a b
OR cond_al=b_b) AND prev=CondIn
THEN slicond=CondIn ELSE (IF
cond_al=a_b_c THEN slicond=CondIn
ELSE slicond=CondQOut ENDIF)
ENDIF)
END SLLCond
Figure 1I1.7 Figure 111.8 Figure II1.9
Specification language Specification language Specification language
of SLLSnr.pvs of SLLSp.pvs - of SLLCond.pvs

IV. Conclusion and Further Study

In this study, we could visualize the system requirements easily by using CPN model and verify the
system mathematically by using PVS. The integration of CPN and PVS, which realizes rapid prototyping
and mathematical verification, can enhance the software reliability. CPN and PVS can cover disadvantage
of each other. In order to help flow-through from modeling by CPN to mathematical proof by PVS, a
translator has been developed and used in this work. Our software verification method is demonstrated to
be useful with a simple example application.

In the future, we are planning to use this software verification method for safety critical system in

other areas.

—-319-

[References |

[1] Kurt Jensen, “Coloured Petri Nets (Basic Concepts, Analysis Methods and Practical Use Volume 1),
Second Edition”, Springer-Verlag Berlin Heidelberg, 1997.

[2] Tae-ho Kim, "Verification of Safety-Critical System Requirements using PVS", Master Thesis,
Department of Computer Science, KAIST, 1997

[3] Jeffrey D. Ullman, "Elements of ML Programming”, Prenice-Hall, Inc, 1994.

[4] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, Mandayam Srivas, "A Tutorial Introduction
to PVS", Computer Science Laboratory, SRI International, Updated June 1995.

[5]1 S. Owre, N. Shankar and J. M. Rushby, "The PVS Specification Language(Beta Release), Computer
Science Laboratory, SRI International, April 12, 1993.

[6] N. Shankar, S. Owre and J. M. Rushby, "The PVS Proof Checker: A Reference Manual(Beta Release),
Computer Science Laboratory, SRI International, March 31, 1993.

[7] Sam Owre and John Rushby, "FME '96 Tutorial: An Introduction to Some Advanced Capabilities of
PVS", Computer Science Laboratory, SRI International, 1996.

—-320-

