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ABSTRACT

We argue that the combination of optimal control synthesis and QFT tuning enables design of controllers

with levels of performance that surpasses what can be achieved using only a single technique. Using a

constructive example, we demonstrate how the strength of each technique is utilized to arrive at a

particularly desired controller in terms of tradeoffs between performance and controller complexity.
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I. INTRODUCTION

In the past decade, norm-based optimal control techniques
have taken center stage for solving simple as well as complex
control problems in linear, time-invariant feedback systems.
They allow for plant descriptions that include various classes
And
The

of norm-bounded uncertainties in unstructured models.
handle single-loop and multi-loop problems alike.
performance specifications are defined in terms of Hqo norms
of closed-loop transfer functions and optimal control
generates the solution if it exists. In contrast, control
engineers often use experience and insight into a particular
problem as the design guidelines and prefer use of manual
loop shaping as the means of generating the controller. This
approach has the advantage in that the designer can work
directly with frequency responses. In QFT[3], the quality of

the design strongly depends on the skills of the control
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engineer, with respect to manual loop shaping. But it also
requires a great deal of experience to be used for complex
problems such as multivariable and non-square systems, and
plants with a large number of resonances. Naturally, the
availability of an initial design would be of great help to the
QFT designer. Based on our experience with both He and
QFT design approaches, it appears that by combing both into
a single design process, the control engineer could enjoy the
benefits offered by each approach. Considering the
weaknesses and strengths of optimal control and QFT, it
seems worthwhile to explore the possibilities of combining

the two approaches into a single, sequential, design procedure

I1. THE DESIGN PROBLEM

This section describes a design example taken from the p-

analysis and synthesis toolbox [1]. It involves a 2x2-pitch



axis controller of an experimental highly maneuverable
airplane, HIMAT. The block diagram of the HIMAT control

problem is shown in Fig. 1.
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Figure 1: Closed-loop interconnection structure of HIMAT

The interested reader should refer to [1] for additional insight

into the problem and the design via p technique.

111. QFT TUNING

The QFT design is done as follows. A diagonal QFT
controller, F, is inserted before the p controller K as shown in

Fig. 2.
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Figure 2: New closed-loop inter-connection structure of

HIMAT showing QFT controller F

The robust stability constraint becomes

del

where F = diag[ f,, f ].
The robust performance constraint is that

[Wo1+GKRRY!| <1

"w KFG___ (1+KFG )“” <1
nom nom o

is satisfied for each Ge G. The technical issue we must deal

with now is that the QFT design framework for MIMO

systems is inherently different from the norm - based
approach. In QFT, performance specifications are placed on
each SISO element in the matrix function of interest. Clearly,
it is virtually impossible for QFT to deal directly with norm-
based specifications. However, we believe that for the
purpose of controller tuning, it is possible to modify the
weights from a norm-based formulation into the QFT’s
framework and still maintain the basic performance
requirements.

We first modify the full block uncertainty Ag as follows.

Consider a block diagonal structure

Al (S) 0
0 Ay(9)

and approximate the frequency responses of A, using an N-
point representation of their boundaries

Xi(jw) - {cos(nn/N)+jsin(n”/N):

n=1..N }QA‘(jw)

resulting in an approximated frequency response set of the
uncertain?

A (i) = Ptgor o

AG(Jw) lo /-\z(jw)]

The approximate plant family becomes

G={6=G,,(+A;W,): A, stable]

The nominal plant remains unchanged and this approximate
plant family consists of (N+1)x(N+1) members. Let us now
define a new plaﬁt P consisting of the original plant G
cascaded with the p-controller K, P = GK. The new plant
family is:

P={P=GK: Gel,}

With the QFT controller F (Fig. 9), the robust output

sensitivity specification becomes
"WPSIL <1, foreachPeP

where S = (I+PF)-1. For each P e p' we compute the

sensitivity with nominal QFT control (i.e., F = I),

4py  -pi2
S = [in 512]: B IO T
m 2 Sp b+py) +pgy +det[P]
P, {pij}mef’ m=1l.MN+1
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and use it as the baseline frequency response for QFT tuning.
That 1s, since the p controller K already satisfies our
performance specification, the magnitude of the u sensitivity
for each plant in the approximate family

W =

m

S | m=1,...,(N+1)?

is used to define the following QFT’s robust performance
problem. With the QFT controller F =diagl[f,,f,] included,

the sensitivity transfer function becomes

[“*‘Pzszz ‘Plszz]
S = St Sizg - “Pamfli  HpPngh
m Sip Su, l+py £ +pyy , fy +det[Py )if,

=N+
and for each plant in the family P we write the sensitivity
specification as
lSijm1SWijm, Lji=12, m=1,.,(N+1)

While robust stability of the design is automatically
guaranteed in optimal control, in QFT one must include this
constraint explicitly.  Assuming no unstable pole/zero

cancellations in the loop, the feedback system is robust stable

if the nominal system is stable and

[[+P,(@)F(o)>0, m=1.,(N+1)°

the QFT robust stability margin specification takes on the
form

Li=12, m=1,...,(N+1)

is“mls max
WP

where
1

S:: -_——
m l+pfimfi
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and where
¢ _ Pl -deiPmlfy ¢ _ P22g -detlPplfy
Pu, = tepazy, 2 Zm T Bpnpgh
and we have used max l/wpl =2.

The QFT Toolbox {2] is used to generate the corresponding
bounds at a set of frequencies. These bounds are then
intersected to yield worst case bounds. To achieve nominal
stability we actually loopshape p;,f, with the nominal plant
p;,, corresponding to Gg. A screen capture of a typical

interactive loop shaping environment is shown. Specifically.

two QFT bounds, the original (f] = 1) and the tuned nominal

loops are shown in Fig3. The effect of a 3™ order f] on the
loop response is highlighted at ® = 500 (see arrow).

After f1 is designed, we proceed to tune fp. Again, to
achieve nominal stability we actually loopshape p;,,f, with
the nominal plant p;,, corresponding to Gg. A screen
capture of a typical interactive loopshaping environment is
shown Specifically, two QFT bounds, the original (f} = 1)
and the tuned nominal loops are shown in Fig 4. The effect

of a 5" order f» on the loop response is highlighted at o =

300 (see arrow).

Figure 3: QFT bounds, tuned and un-tuned nominal oops in

the first loop

Since we have been tuning the approximate plant only, at
each step we analyze the structured singular values using the
u toolbox. As it turns out, using a few QFT iterations, we
were able to find the direction u changes for small changes in
the open-loop response. This is especially useful when we
tune the response over a “small” frequency band. That
insight is exactly what makes QFT tuning so powerful. It is
important to note that the QFT performance bounds are not
exact relative to the original, norm-based specifications. And
so, it is feasible that the nominal loop does not satisfy its
bounds. yet the structured singular value is below 1. This

insight is learned during the QFT tuning/u analysis cycle.
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In Figs 3-4, one can observe what QFT can offer in terms of
reducing the high-frequency gain. While satisfying the low-
frequency robust performance bounds (the line across the

Nichols chart), and avoiding the robust stability margins

Figure 4: QFT bounds and final design for the second loop

bound (the closed curve in Nichols chart), one can attempt to
reduce high frequency gain by adding/tuning any number of
“far-off” poles. The designer can tune the values of such
poles by interactively dragging the loop response to the
left/down at a specific frequency. The feasible limit for such
shifts is exactly the QFT bound. This is a rather straight
forward process yet it does require experience.

We compare the resulting reduction in the controller high
frequency gains between the two design approaches. Figure
5 depicts such values for the 12"-order combined QFT/u
design (without sensor noise), and the 12"-order p design

with sensor noise. As seen, the W/QFT design satisfies the

robust performance with the lowest bandwidth.

IV. CONCLUSIONS

In this paper we have shown using a generic, multivariable,

robust performance problem, that the combination of p-
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synthesis and QFT tuning led to a controller whose
1d

1d

16°
1 (w/o sensor ncise)/qft

K with sensor noise

10%}
1¢* " . . \ e M)
1d' 1d 10 1 10 1¢ 1@

rad/sec

Figure 5: Comparing controller singular values of the two

design approaches

performance levels may not be achievable if only a single
technique was used. This design approach enjoys the strength
of p-synthesis in dealing with complex multivariable problems
(such as non-square and/or highly coupled plant) and QFT’s ability
to deal directly with plant frequency response plant and easily tune
control response over narrow frequency bands. Our findings

strongly suggest that the historical academic competition between

the two design philosophies should end.
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