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Abstract

The physical parameters of controlled systems are uncer-
tain and are accompanied with nonlinearity. The transfer
function of the controlled system should, therefore, be ex-
pressed by interval polynomials. This paper describes the
realization of robust performance for that type of control
systems (interval systems) via model reference feedback.
Tirst, we will analyze an invariance problem of dynamic
characteristics such that the dominant roots do not break
away from a specified circular area, and will present a
discrimination algorithm (i.e., a division algorithm) for
the extreme points of the uncertain coefficients. Then,
we will present a design method of control systems which

have a robust performance such that the location of the -

dominant roots does not vary excessively.

1. Introduction

Since the physical parameters of controlled systems are
uncertain and are accompanied with nonlinearity, the
transfer function should be expressed by interval poly-
nomials [1, 2]. This paper describes the existing area
of characteristic roots for control systems which are ex-
pressed by that type of transfer function. A discrimi-
nation method of the number of characteristic roots in
a specified area on an s-plane was developed in our pa-
per [3], when a characteristic equation was expressed as
an interval polynomial. The criterion is based on the
classic Sturm’s theorem. The discrimination algorithm
was expressed so that it can be easily programmed on a
computer. This paper examines an invariance problem of
dynamic characteristics such that the dominant roots do
not break away from a specified circular area (a disc), and
presents a discrimination algorithm (i.e., a division algo-
rithm) for the extreme points of the uncertain coefficients.
Designing examples of a control system with robust per-
formance using model reference feedback are presented.

2. Interval Polynomials

The transfer function of a control system with uncertainty
(and nonlinearity) is expressed by interval polynomials.

-1

Fig. 1 Circular area (09 = —0.75 and wg = 1.0, p = 0.3
or p =0.6.

Therefore, the characteristic polynomial of a control sys-
tem with uncertainties can be written by an interval poly-
nomial as follows:

F(s) = dos"+@s" '+ +an-15+dn, (1)

g €a7;at], (1=0,1,2,---,n).
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When expressing interval polynomials in terms of nominal
coefficient a; and maximum error Ag;, the following can
be obtained:
+ +
a; +a; _ a’ —a.
a'l — 1 2 1 , Aaz = k) 2 i3 ,
la; — ai| = |Aa,‘| < Ag;. (2)

By using free parameter ; interval coeficient a; can be
expressed as follows:

vi€[-11. (3)

In Eq. (3), non-negative free parameter ¥ which is written
by

@ = a; + Ag; = a; + 7 - AT,

lvil <7 el0; 1), Vi (1)

can be found.

Based on the expression of Eq. (3) for interval coefficients
@;, Bq. (1) can be rewritten as follows:

F(s) = F(s) + AF(s), (5)

167



where F(s) and AF(s) are the nominal and the uncer-
tain parts of interval polynomial F'(s), respectively, and
written as

F(s)=aps™ +a;s" '+ +an_15+ an,
AF(s) = Aaps™ + Aays" P4+ Aan_y s+ Aa,,
= 1ATs" + 1 Ads" T+
oot Y1 AT 18 + Y, AT,

Moreover, the following inequality can be given:

|AF(s)] < 7 - max |AF(s,m;)l, (6)
J

where

A-F_(s, 7)]') = poNags™ + 11 Ad; Pt +
ot Uy 1 AT, 8 F VAT,
N = {vo, w1}y, v €{-1; 1},
(1=1,2,3,..-,2").

When analyzing a given transformation (i.e., the mapping
of circular contour I" as is shown in Fig. 1) in an s-plane,
1.e., ‘ .
s = pe’® 4 09 + jwo, (7)

the following chracteristic polynomial with complex coef-
ficients can be obtained:

®(jo) = P(a) +jQ(e), (8)
P(e) = agoe™ + [10,10'"_1 + -+ Gon-10 + 0,n,y
Qo) = 130,00:" + 50,10"_1 +---+ 5o,n—1a + 5o,n,

&-O,i € [aaiw ﬂ»bﬁ,‘]a 80." € [b(;,v bg-,]a (2 =0,1, 2., 7‘1)

Here, « corresponds to the following variable:

« = tan(0/2). (9

3. Discrimination of the Number of Roots

If the pu pieces of the characteristic roots are present in
specified circle 8T, the argument change in the mapping
of characteristic polynomial (1) should be 2uw, regardless
of its interval coefficients.

Assume that fy(o) = P(«), fila) = Q(«). As for
P(e)/Q(&v) (or —Q(a)/P()), the following division al-

gorithm can be used [4]:

fole) = fi{e)qi (@) = fa(o),

file) = fa(e)qa(e) — fa(e), (10)

fon—2 = fan-1(0)qan_1(a) ~ fon(@).

If fo(e) and fi(«) are of the n-th order in regard to o
and coprime,

f2(a)1 f3(a)1 T f‘lﬂ

are all present and

f?h(a)l f2h+l(a)1 (h = 01 1, rry— 1)

become the (n—h)-th order polynomial, and fs, becomes
a non-zero constant. That is, fo(e), fa(e), -+, fon can be
expressed as follows: :

fal@)=ai 0™+ tay,
fa(a) =b 0™ 4+ by,
(11)
fon2(0) = @poyn-10+ 8010
Jon—1(a@) =bp_1n_10+ b1

f2n =Qn.n.

In order to simplify the notation, interval coefficients a; ;,

b; j (which are obtained by the division algorithm) simply
denote a; 5, b,',j.

Each coefficient can be given by the following sequential
operations:

- ao,0
G1p = 0,p bO 0 — @o,p,

?

b
bip = @ip41 (*2£> = bo,p,
a1

(p=1,21"'1n) (12)
— aq_lsq_l
tgp = by-1 (b ') — Qg—1,p»
g—1,9—1
by—1,4-1
— q—1,9
bip = @gpt1 (—_—a — Og—1,p»
2.9
(p = q, » . s n)
Qp—1,n—1
Qnpn = b'n—l,n b—' = Qn—_1,n;
n—1n-1
(aq,nH = 0)

When a characteristic equation is expressed as an interval
polynomial, these sequential operations should be based
on interval arithmetic. Interval arithmetic, however, can
only be used where each variable (coefficient) is indepen-
dent. Because the calculation in Eq. (12) was advanced
sequentially by using the preceding results, each variable
(coefficient) is not independent; therefore, the use of in-
terval arithmetic in the above sequential operation may
give a more conservative result. The number of character-
istic roots, however, can be discriminated by the extreme
point in each coefficient of Eq. (12). (Note that the de-
nominator of Eq. (12) must not become zero, although
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this is only a problem in certain singular points. )

Since the extreme points of the interval sets of series (ar-
ray) agp and by, (¢ =1,2,---,n,p = q,--+,n) are given
in order according to the extreme points of the uncer-
tain coefficients in interval polynomial (1) and (8), these
extreme points can be determined by using all the com-
binations of the extreme points of the coefficients in the
interval polynomial. Therefore, the following theorem in
regard to the robustness of control systems can be oh-
tained {3]:

[Theorem] A necessary condition for the u pieces of
the roots of characteristic equation F(s) = 0 (which are
present in specified circle 9T') is shown below.

The following coefficient ratios should be calculated (they
were present in division algorithm (12)):

b1,

a1 @a2

b0,0 bn—l,n—l

(13)

Ly
Gn.n

for all the combinations of the extreme points of the uncer-

tain coefficients in the family of characteristic equations,

F(s) = lag;ag)s" +[a7iaf )" + - +[ag1a7] = 0.
(14)
If the number of ratios that is to be negative is not
changed, a control system that is characterized by Eq.

(14) has a robust performance in regard to the invariance '

of the number of characteristic roots in specified circle dT'.
Moreover, when the above also holds for ¥ € [0;1] in Eqs.
(2), (3) and (4), it becomes the necessary and sufficient
condition.

(Proof) The necessity is obvious from Sturm’s theorem
(i.e., the results of Egs. (11) and (12)). An outline of the
proof, especially for (c), will be given in Appendix.

On the other hand, the sufficiency can be proven by using
Ronché’s theorem. If the number of roots of characteristic
equation

F(s)+v-AF(s,9;) =0, Vy€[0; 7], Vy; (15)

is invariant inside the specified contour, the following
must holds as to s € O

F(S) ;é i AF(Ss 771'), V’Y € [0~ 7]a

Thus, the following inequality can be given:

;.

|F(s)} > ¥ - max|AF(s,n;)|, Vs € oT. (16)
;
As a result, we can obtain
|[F(s)] > |AF(s)], Vsedl (17)

from Eq. (6).

ImF

ReF

Fig. 2 Polyhedral mapping of 9T for Example 4.1.

ImF

Fig. 3 Polyhedral mapping of OT for Example 4.2,

By using Rouché’s theorem we may conclude that the
number of roots of characteristic equation

F(s) = F(s)+ AF(s) =0 (18)

is invariant inside the specified contour, regardless of un-
certainty AF(s), i.e., free parameters v; € [-1; 1] in Eq.
(3). O

[Example 4.1} Consider the family of characteris-
tic equations with low frequency uncertainty (e.g., sector
nonlinearities [5, 6]} as follows:

0.005s* + 0.255% + [0.9; 1.1]s% + [1.1;1.4]s + [0.8; 1.2] = 0.

(19)
When a circle with center (—0.75, 7} and radius r = 0.6
is specified, the number of the characteristic roots in the
circle is u = 1 for all 23 = 8 combinations in the extreme
points of the uncertain coefficients. A graphical interpre-
tation of the discrimination theorem, i.e., a polyhedral
mapping is shown in Fig. 2. In these figures, 23 vertices
of the polyhedra indicate extreme points of the interval
sets [7).
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Nf(s)
Dy(s)

Fig. 4 Realization of robust performace via model feed-
back.

The calculated results show that the number of roots in
the specified circle did not change. Moreover, the number
of the dominant roots was maintained for all 7 € [0; 1].
On the other hand, when a circle with radius » = 0.3 is
specified, the calculated results show that there are some
cases where the dominant root does not exist in the spec-
tfied area.

[Example 4.2] Consider the family of characteristic
equations with high frequency uncertainties as:

[0.001; 0.009]s* +[0.1;0.4] s> +[0.8; 1.2]s* +1.25s+ 1.0 = 0.

(20)
When a circle with center (—0.75,7) and radius » = 0.6
is specified, the number of the characteristic roots did
not change. A polyhedral mapping is as shown in Fig.
2. On the other hand, when a circle with radius » =
0.3 is specified, the calculated results show that there are
some cases where the dominant root does not exist in the
specified area.

4. Realization of Robust Performance

Let us consider a model feedback system, as is shown in
AT AT '

Fig. 4. Tere, (i = 8 = Nm(®) o Ny(s)
D(S) Dm.(s) Df(S')

uncertain(interval) plants, plant model and feedback com-

pensator, respectively. Here, we will assume that N(s)

and D(s) are expressed by interval polynomials as shown

in Eq. (1).

are

By using this type of feedback structure, a robust perfor-
mance for the uncertain control system can be realized [8].
If feedback compensator Gy is chosen as

Ny(s) = Du(s), Dys(s) = No(s, 7)Nm(s),  (21)
modified control signal u is given by
., No(s,7) D, (s)
U= e =1 ( A AT A LA A
(22)
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Fig. 5 Step responses for Example 5.1, when model ref-
erence feedback was not used.

1.0

1.0

] P O R
Fig. 6 Step responses for Example 5.1, when model ref-
erence feedback was used.

where i(s), #(s) and §(s) denote the Laplace transform
of u, r and y, respectively. Here, Ny(s, 7) is an (n—m)-th
order polynomial which should be designed in the feed-
back system as is shown in Fig. 4.

In this paper, we will choose
No(s,7) = (rs +1)""™, (23)

where 7 is an appropriate (small) positive number. From
Eq. (22) the following can be obtained:

Dn(9)
N (s)

(No(s, 7) — 1)it(s) = (No(s,7)#(s) - i(s). (24)

As is obvious from Eq. (24), when 75 — 0, 9(s) —
N (8) A (s)
D..(3) #(s).

transfer characteristics from = to y becomes approxi-

Ne(s e . .
mately —m—(l and it is invariant regardless of uncertain-
Dpn(s) .
ties (i.e., interval set parameters) in plant G. In other
words, it can be shown that the model reference feedback

system has a robust performance.

When operating in lower frequencies, the

The characteristic equation of the closed loop system can



‘1.0

Fig. 7 Step responses for Example 5.2, when model ref-
erence feedbak was not used.

be expressed as

D, (s)N(s)

(‘VO(Ss T) - 1) + l\rm(S)D(S)

=0. (25)

When uncertainties of plant G exist only in the denomi-
nator, that is, N(s) = N,,(s), the characteristic interval
polynomial which corresponds to Eq. (1) can be written
as follows:

ﬁ‘(s) = No(8,7) Dy (8) + (No(s,7) — 1)AD(s), (26)

where D(s) = D (s)+AD(s). As for Eq. (26) the invari-
ance of the dominant roots is examined in the following
examples.

[Example 5.1] Assume that denominator polynomial
D(s) of an uncertain plant is expressed by an interval
polynomial as shown in Eq. (19) and numerator polyno-
mial N(s) is written by N(s) = N,.(s) = 1. In addition,
we choose

No(s,7) = (0.1s + 1)*. 27)

By using this type of model reference feedback, the invari-
ance of the number of characteristic roots can be accom-
plished in regard to a smaller circle with radius p = 0.3.
Step responses in regard to the extreme points for uncer-
tain control system G(s) are as shown in Fig. 5 and Fig.
6, when the model reference feedback was not used and
was used, respectively. As is clear from the figure, the
robust performance according to the above was realized.

[Example 5.2] Assume that denominator polynomial
D(s) of an uncertain plant is expressed by an interval
polynomial as shown in Eq. (20) and numerator poly-
nomial N(s) is written by N(s) = N(s) = 1. Here, we
choose the same Ny(s, 7) as in Eq. (27). The invariance
of the number of characteristic roots can be accomplished
in regard to a smaller circle with radius p = 0.3. Step
responses in regard to the extreme points for uncertain
control system G(s) are as shown in Fig. 7 and Fig. 8,
when the model reference feedback was not used and was
used, respectively.

B u(s)

10 {;

Fig. 8 Step responses for Example 5.2, when model ref-
erence feedbak was used.

5. Conclusion

This paper discussed the existing area of characteristic
roots for control systems which are expressed by trans-
fer functions that are composed of interval polynomials.
A discrimination method of the number of characteristic
roots in a specified circle on an s-plane was presented,
when a characteristic equation was expressed as an in-
terval polynomial. A theorem was given in reference to
the extreme point results which corresponds to the weak-
Kharitonov’s theorem for interval polynomials. The the-
orem can be used as an invariant condition of the number
of characteristic roots in the specified circle. In particu-
lar, in this paper, the invariance of the dominant roots
in the circlar area and the realization of control systems
with robust performance using model reference feedback
were examined.
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Appendix

The equation of the contour (7) can be written as

U+ v
5= , 28
° 1-ja (28)

where
w = p+ o0+ jwo,
v = wp + j(p — 00)-
A numerator polynomial for variable e,
(o) = (1 - ja)" F(ja), (29)

that is, Eq. (8) is obtained by substituting Eq. (28) into
Eq. (1). Here, the relationship between variable § and
variable « is expressed as:

f=-m «a=-00,
0=0; o =0,
0 =+m; o= +oo.

from Eq. (9). Thus argument change 2um as mention
in section 3 becomes (2u — n)w for Egs. (8) and (29) by
adding change —nr in the argument of (1 — jo)™. When
P/Q (or —Q/ P) is considered, the number of sign changes
which cross zero for & : —co0 — +00 is n— 2u. If the num-
ber of sign changes which cross the zero of fo(a)/ fi ()
for o : @ — vy is expressed as N (o, &) and the number
of sign changes of sequence

_fO(a): fl(a')s STy f?'n.

is expressed as V'(«), the following relationship is ob-
tained:

N(op @) = V(on) = Viaa). (30)
Since the condition is N (—o00,+00) = n — 2u,
V(—oc) = V(+o0)=n—-2u (31)

are obtainable.

On the other hand, the following expressions are derived
from Egs. (8) and (10):

fole) _ Qo0

a="oo fi{@)  bog
1 file) _ _boo
a——00 |a]f2(a) a1

f2n—1(°-') _ .bn—l,n.—l

lim = -
@——00 ’a’lf2n(a’) Apn
fole)  aop
= 200 32
a—+oo fi(a)  boo (32)
. fi(e) bo,0
lim @) _ Poo
amtoo [alfola) | a1
f2n—1(a) — bn—l,n—l
a—+o00 Ia’lan(a’) An,n

The condition of Eq. (31) corresponds to observing
whether the even numbers of these ratios (ratios to the
polynomial of different orders) are negative or not. Con-
sider the following ratio sequence:

lim ———fl(a)
a=+oo |off2(a)’

f?n—l (G)

Y a—too o faa(@)”

In this sequence, if we assume that the number of negative
ratios is ¥ and the number of positive ratios is P, the
following expression can be obtained from Eq. (31).

P-N=n-2u. (33)
Since P+N = n, N = p can be obtained. The coefficients
in Eq. (32) can be calculated by

O(jo) = Y _ax(u+ve)"F(1-ja)  (31)

k=0

from Eq. (28). This equation is expanded by

i zn: nZ-? * <nf1_nk—l> (l;) (=§)lumiHnTm g,

m=0 k=0 I=k—m

Therefore, we obtain

ao,m + jbo,m

_ - n—k k om—k+4l, n—m—1
- Tk (n—m—l) (1)(—])u v

where small .
( ! ) =G

denotes the combination sign.
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