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Abstract

This paper presents a multi-modal neural network composed of a preprocessing module and a multi-layer
neural network module in order to enhance the nonlinear characteristics of neural network. The former
module is based on spectral method using Chebyschev polynomials and transforms input data into spectra.
The latter module identifies the system using the spectra generated by the preprocessing module.

The omnibus numerical experiments show that the method is applicable to many a nonlinear dynamic
system in the real world, and that preprocessing using Chebyschev polynomials reduces the number of
neurons required for the multi-layer neural network.
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We propose a multi-modal neural network consisting of
1. Introduction multilayer neural network with a preprocessing module.
The preprocessor is based on spectral method using

The construction of models for pattern recognition,  Chebyschev polynomials and transforms input data into
system identification, time series and control of initially  gpectra which is used as input of the latter module.
unknown and potentially nonlinear systems is a difficult
and fundamental problem of _real world applications. 2. A multi-modal

Neural network(NN) is a prevalent method to deal

in nonlinear problems, and its representative roles are Chebyschev polynomials
functional approximation and pattern recognition.
However, if a system is strongly nonlinear, the 2.1 Multi-modal model
conventional multilayer neural network is not always easy
to use, because it requires many neurons. We want to
develop neural network model building up nonlinear
characteristics without using so many neurons”. Any LX)
function can be approximated using only a finite number X™ Tv)
of terms of orthogonal functions, for example a function T(X) BX)
is approximately expressed by a few terms of Taylor YT
series. This means lower order components are more .12(1).
important than higher ones. Our basic idea is that giving
the lower order components and neural network processes
getting the components.

An intuitive expression of the significant property
of the multi-modal model is that the neural network
makes the discriminant surface combining curves yielded In general multilayer neural network can map a

from the functional transformation, not straight lines. space of input data to that of output data imitating a given
nonlinear function. To restrict increasing the number of

neural network using

Fig.1 Multi-modal neural network
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neurons, we divide the mapping process into two. One is
transforming input data into spectra, which are outputs of
some orthogonal functions. Another is inputting the
spectra into the successive neural network and it gives
outputs. To address intuitively, the combined model maps
partly by functional transform and partly by multilayer
neural network.

A neural network model consisting of more than one
neural network is often called multi-modal neural network,
and a neural network involving some non-neural model is
also called multi-modal neural network. Our model
belongs to this category, because it consists of prepro-
cessing module and multilayer neural network module.

2.2 Chebyschev polynomials

We select Chebyschev polynomials for prepro-
cessing transform. Chebyschev polynomials are defined
by

T,(x)=cos(n* cos’ X).

ey
First few polynomials are

Tox=1,  T;(0=x,

T,0)=2x>1, T,x)=4x"-3x,"". @

Chebyschev polynomials have following properties,

- Ty(x) is a polynomial in x of degree n.
- If n is even(odd), T,(x) is even(odd) function..

AT(x) I=1 (ifkxI=1) 3)

Most functions can be represented with orthogonal
functions, e.g. Taylor series f(X)= = a, X, and
Chebyschev function series f(x)= = a, Ty(x).etc”. If we
cut the series in only a few terms, Chebyschev
approximation is more accurate than Taylor one, for the
same function.? For a rapidly converging series, the error
due to truncation is approximately given by the first term
of the remainder, ie., a T (x).

To produce a viable mechanism for building a model
based on Chebyschev polynomials with a limited degree
is probably difficult. Our essential idea to avoid this is to
combine Chebyschev transformation and multilayer
neural network. It realizes no need of higher order of
Chebyschev polynomials nor explicitly determining
coefficient of them, because fitting to data is performed
while learning of neural network.

3. Pattern recognition

Pattern recognition is one of the most representative
applications of multilayer neural network. If a neural
network can recognize a complicated pattern, it must
discriminate a nonlinear hypersurface. To investigate
the discriminant ability of the neural model, we make an
experiment to recognize a region enclosed by curved
lines.

* indistinguishable
outside
+ ingide

Fig2. Pattern recognition by multilayer

neural network

= indistinguishable
+ inside
outside

Fig3. Pattern recognition by multi-modal

neural network

Fig.2 shows the result using multilayer neural
network, whose structure is 2-6-4-l,e.g. it has two
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neurons in the input layer, 6 neurons in the second layer, 4
neurons in the third layer and one neuron in the output
layer. Roughly speaking the region seems to be
recognized, but the region is quarried by straight lines.
There are many big dots( - ) that denote
indistinguishable points. Here we call “indistinguishable”
is that the output from neural network is no less than 0.1
and no greater than 0.9. In the indistinguishable region,
we cannot consider the points if they belong to inside or
outside of the region.

Fig.3 shows the result using multi-modal neural network,
whose structure is 4-6-2-1. This model involves 47
unknown parameters e.g. synapses and thresholds.
Number of unknown parameters is less than that of the
conventional model which requires 51 parameters. The
region is recognized clearly and is quarried by softly
curved lines. There are some big dots(-), but the number
of them is far less than that in Fig.2. It means our model
recognizes the region with only a few ambiguity.

4. Functional approximation

Functional approximation is also one of the most
representative applications of multilayer neural network.
To evaluate the approximating ability of the neural model,
we make two types of experiment: nonlinear function
approximation and time series prediction.

4.1 Non linear functions

The following is an example of test functions for
functional approximation:

£(x) = —log(2 + X) + sin(27x) +-;-cos(61|:x) 4)

3.5
Actual
3 + Approximated
+ Error
2.5
2
> 1.5
1
0.5 J
T H
0 M/\,A i1 F
'; \/\\j b
-0.5
0 0.5 1 1.5 2

X

Fig4. Functional approximation
by multilayer neural network

Fig4 shows a functional approximation by
multilayer neural network whose structure is 1-10-1. The
conventional model can only fit outline of the curve.
Small hillocks and gullys are almost ignored.

Fig.5 shows the functional approximation by multi-
modal neural network whose structure is 3-6-1. Here 3
means T,(x), T,(x), and T5(x) are used for preprocessing.
Seeing error curves of Fig. 4 and 5, approximation by
multi-modal model is obviously better than conventional
neural model.

35
Actual
3 *«  Approximated
+ Error
2.5
2
> 1.5
1
0.5
0 W\‘NWNW‘M
-0.5
0 0.5 1 1.5 2

Fig5. Functional approximation by
multi-modal neural network

4.2. Time series prediction

Analysis of time series data plays an important role
in finance and marketing. For example, models predicting
demand for product will be used to production schedule
and direct capital allocation. A model derived from past
data can help to predict future behavior of the market.

Time series problems are substantially function
identification, and multi-modal model leamns the
characteristics from past data. Time series prediction is
defined like that

Y*n+l=f(men-b v yn-t) (5 )

The test data of time series prediction is artificially
generated. The values(y’s) are drastically up and down
like a stockprice. Prediction Y*,,; is calculated from
three previous data y,,y, 1, and Yy3.

Fig.6 shows predicted value using conventional

neural network whose structure is 3-5-1. The prediction is
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errors are not so high.

Fig.7 shows predicted value using multi-modal
neural network whose structure is 6-3-1. The prediction
looks like almost same as Fig.6. However precise
inspection reveals that the prediction error of multilayer
model is about half of that of conventional model(Fig.8).
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Fig.6 Time series prediction by neural network
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Fig.7 Time series prediction by
Multi-modal neural network

5. Conclusions

We propose a malti-modal neural network model
consisting of Chebyschev transform and multilayer neural
network. Using Chebyschev polynomial we succeeded
in enhancing the ability of multilayer neural network , for
example pattern recognition and functional approxi-
mation.

Nunerical experiments result in the proposed method
can find discriminant curves , and approximate strongly
nonlinear functions.with small number of neurons.

We begin this research intending to build neural

controller having strong nonlinearity. This application

research is now going on by one of the coauthors.
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Fig.8 Comparision of prediction errors
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