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Abstract

A design technique based on the root locus approach for
the SISO (Single-Input Single-Output) systems using
PID (Proportional-Integral-Derivative) x (n-1) stage PD
as a controller for the n” order plant is presented. The
controller is designed based on transient and steady state
response specifications. This controller can be used
instead of a conventional PID controller. The overall
system is approximated as a stable and robust second
order system. The desired performances are achieved by
increase the gain of the controller. In addition, the
controller gain can be adjusted to obtain faster response
with a little overshoot. The simulation results show the
merits of this approach.

1. Introduction

Most industrial plants are type 0 and consist of three to
five first order lags or dead time plus one first order lag
[1]. The type 1 plant that consists of one to two first
order lags is also often met in industry. The PID
controller is widely used by applying the well-known
Ziegler-Nichols tuning method [2]. Clearly, the PID
controller is properly applied in the typical second order
plant, but it is quite difficult to use only the PID
controller for the third or higher order plant because the
order of the plant is greater than the number of zeros
provided by the PID controller [3,4,5]. Moreover, the
tuning methods sometimes require trial and error
procedure, and the original Ziegler-Nichols settings do
not always produce the best results to meet the transient
response requirements because of the Y% decay ratio
criterion.

This paper presents a design technique based on the root
locus approach for the n” order plant G,(s) to satisfy
transient and steady state response specifications. The
PID x (n-1) stage PD is used as a controller G.(s). With

this controller, the overall system becomes proper
system, and is designed to be an approximated second
order system. Of the two poles of G(s)G,(s), one is
located at the origin and the other is located nearest the
origin; these are defined as significant poles. If the poles
of G.(s)Gp(s) are located at the origin, they are also
defined as significant. The remaining (n-1) poles are
considered as insignificant poles in both instances. Due
to the transfer function of G,(s) usually determined
through testing and physical modeling, linearization of a
non-linear plant, or the uncertain parameters concerned,
-which cause the location of the poles may not be exact.
Then (n-1) zeros of the controller are arbitrarily placed
near the left-hand side of those insignificant poles of
G.(s)Gp(s) in order to reduce the effect of these poles.
The desired locations of two dominant closed-loop
poles s; are determined from the transient response
specifications. The double zeros of (s+zc)2 of the
controller must contribute the necessary angle to force
the root locus to go through s, The location of the
double zeros of (s +z,)* and the gain K, at s, can be
determined graphical or numerical computations when
this procedure is not provided by pseudo quantitative
feedback theory [6]. The other (r-1) closed-loop poles
are located between the (n-1) pair of the open-loop pole-
zeros. Hence, the amplitudes of the transient responses
of these (n-1) closed-loop poles are very small and
negligible although the exact pole-zeros cancellations
do not occur [7]. However, the transient response does
not completely satisfy the specifications because of the
effect of the double zeros of (s+z.)>. By this technique,
all of the root loci located on the left half of the s-plane,
and the significant root locus is a circle shape. Then the
gain K, can be increased to reduce maximum overshoot
and obtain the desired specification. Faster response
with a little overshoot can also be achieved by further
increase the gain X.. Consequently, the system can be
made stable and robust. Note that the effect of output
disturbance is rapidly eliminated.
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MATLAB's simulation results have indicated that when
the plant has +25% parameter deviation, the system
performances remain essentially unchanged. Moreover,
when the gain K, is increased, the effect of the uncertain
parameters is also decreased.

2. Structure of the SISO System

The structure of the SISO system is shown in Fig.1,
where a unity feedback is assumed.

D(s)
R(s) + + +  Y(s)
G G,

Fig. 1 Structure of the SISO system

When the PID controller is applied to a high order plant
with step input, steady state error e(?) is zero, but the
transient response does not meet the specifications. To
meet the specifications and robustness, the PID x (n-1)

stage PD controller for the n" order plant is defined as

1 n-1
G.(s)= Kp(l r— TdsJEKpj (1+7,s)
, ! M
= Koy (s + zc)zri:[](s +z; ),
=l

s

where K, T, and T, are proportional gain, integral time
and derivative time of the PID controller; K,; and T, are
proportional gain and derivative time of the (n-1) stage
PD controller; -z is the real double zeros (T;= 47T,) of
the PID controller; -z; is the real zeros of the (n-1) stage
PD controller; K., is the gain of the controller.

The structure of the »” order plant are often found and
classified into type 0 and type 1. The transfer function is
given by

K

G,(s)= , (2)

6+ PTG+ )

where -py is the real pole located nearest the origin (type
0), and ps =-0 (type 1); -pi (=1,2,...,n-1) is the real
poles.

The open-loop transfer function of the closed-loop
system is

Kc(s + zc)zri:ll(s + zj)
G(5)G ,(s) = — : ®)
s(s+ pd)EIl(s+ pi)

where K. = KK_;.

As mentioned previously, one pole located at the origin
and the other located nearest the origin, or both located
at the origin, these are considered significant poles, and
the remaining (n-1) goles are insignificant poles. The
double zeros of (s+z.)" are used to force the root locus to
go through s,. The (n-1) zeros are placed near the left—
hand side of the (n-1) poles in order to reduce their
effect. Hence from (3),

Kc(s+zc)2ri:ll(s+ Di "‘5&)
G (5)G,(s) = =

n-1 ’ (4)
sto+ 26+ 2.

where -z, = -(p; + &) (=1,2,..,n-1; i=1,2,...,n-1), & is
a small real number.

From (4), in case of the type 0 plant, if some of -p;, = -p,.
only one pole of those multiple poles is considered as a
significant pole.

3. Design Procedures

The design procedures to meet the specifications are as
follows:

1) The damping ratio (&), undamped natural frequency
(w,) and s, are determined from the transient
response specifications in (5).

P.0.=100e "¢ %, I, =4/¢w, (£2%),
Sy =—4w, ijwnwll—é’z .

where P.O. stand for percent overshoot and i, is the
settling time.

&)

2) Place the location of s4, all poles and the (n-1) zeros
of the G¢(5)G,(s) from (4) and (5) in the s-plane.
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3) Find the sum of the angles at s; with all of the open-
loop poles and the (n-1) zeros of G.(s)G,(s) by
graphical or by numerical computations. Then

determine the necessary angle of Z(s; +z,) to be
added so that the total sum of the angles satisfies (6).

Lz f S cloa s pis)
i=

—[st +4(Sd + Pd)“"gl(sd +P1)} (6)

= +(2k + ), k=012,...

4) Determine the location of the double zeros of (s+z.)
using the angle of £(s, +z, ) found in (6).

5) Determine the gain K, at s, from

-1
|Sd "(Sd + P4 ﬁ}ll(sd + Pi]

. . ™
(o + 2 P Tl + i)
6) The closed-loop transfer function is
vy Klrl Tbenve) 8
= )
R(s)

S (32 +2{(ons+a)3 y‘]:[l(s+p,- +5,-)
i=1

n-1
where [T(s + p, +6,) are real or complex closed-loop
1=1

poles located on (or close to) the negative real axis

n-1
between the insignificant poles []{s+p;) and zeros
i=1

-1
’i’l (s+ p; +&;), & is a small real or complex number.

1=1

Since all of the (n-1) closed-loop poles located near the
open-loop zeros, it can be shown that the coefficients of
these closed-loop poles are proportional to (& -&;), which
is a very small number. This implies that, although the
poles at -p; can not be cancelled, the resulting transient
responses due to these closed-loop poles have
insignificant amplitudes, and their effect can be
neglected [7]. If pole-zeros cancellations in (8) are
considered, the closed-loop system can be approximated
as a second order system as
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¥(s) K(s+z)
R(s) - (s2 +2§cu,,s+w3)'

©)

It is evident that the transient response does not
completely satisfy the desired specifications because
greater overshoot occurs due to the effect from the
double zeros of (s+z.)%. By this technique, all of the root
loci located on the left half of the s-plane, and the
significant root locus is a circle shape while the others
are on (or close to) the negative real axis. This means
that all of the roots of the characteristic equation located
on the left half of the s-plane for all positive values of
the gain K,. Then the gain K, can be adjusted to reduce
the maximum overshoot and obtain the desired
specifications. Moreover, if it is required, faster
response with a little overshoot is achieved by further
adjust the gain K, higher than the designed value.
Consequently, the system is made stable and robust.

4. Effect of the Output Disturbance

If the output disturbance D(s) occurs in the system, with
the absence of the reference input R(s), the output Y(s)
due to the disturbance is

Y(s) 1

D(s) - 1+Gc(s)Gp(s)'

(10)

The output disturbance has an important effect on the
step response at the initial state. However, the effect of
output disturbance is rapidly eliminated because of this
controller. Moreover, the effect of output disturbance
can also be reduced when the gain K. is increased higher
than the designed value.

5. Simulation Results

Example of type 0, 4™ order plant

K

(s+1)(s+2)2(s+3).

The desired specifications for step input are

G,(s)=

P.O. <5%, t(+2%) < 1sec, ey t) =0.
From the desired specifications,

¢ =0.690, w, =5.796 rad/sec, sy = -4 +;4.195.



The controller is first set as

cc(s)=%(s+zc)2 (s +2.2)Ys +2.3)s + 3.4).

Determine the angle and location of the double zeros of
(s+zc)2 in according to the s,

Lsy +z.) =90.175°, -z, =-8.182.
The gain K, at s, = 0.906 is determined. Hence,

0.906(s +8.182) (s + 2.2)(s + 2.3)s +3.4)

G ()G =
(0 () s(s + 1)(s + 2)2 (s + 3)

Figure 2 shows the root locus plot of the closed-loop
system. It is clear that all of the roots of the
characteristic equation are located on the left half of the
s-plane for all positive values of the gain K., and when
the gain K. is increased, the P.O. is decreased.

-4
Red Axs

Fig. 2 Root locus plot of the closed-loop system

The step response of the controlled system (type 0) for
the designed K. = 0.906 (P.O. = 9.5 %, t,= 0.75 sec,
es(t) = 0) with the effect of 50% output disturbance
occurred at ¢t = 3 sec., is shown in Fig. 3. With the
designed K, the maximum overshoot is greater than the
desired specification, but the other are obtained.

Figure 4 shows the step responses of the controlled
system (type 0) that satisfy all the specifications when
the gain K, is adjusted to 2 (P.O. = 5 %, ;= 0.6 sec,
es(t) =0), and K. = 20 (P.O. = 0.5 %, 1,= 0.15 sec,
e(t) = 0), with the effect of 50% output disturbance at

t = 3 sec. When K. is increased, faster response is
obtained.

Ke = 0.906
PO =95%

| N
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Fig. 3 Step response of the controlled system (type 0)
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Fig. 4 Step responses of the controlled system (type 0)

Example of type 1, 4" order plant

_ K
Gp(s) - s(s+1)(s+3)(s+4)'

When the same specifications are desired,

1.13(s +7.614)* (s + 1.2)(s + 3.3)s + 4.4)

sz(s+1)(s+3Xs+4) .

Figure 5 shows the step responses of the controlled
system (type 1) for K.= 1.13 (P.O. = 11 %, t,= 0.75 sec,
es(t) = 0), with the effect of 50% output disturbance at
t = 3 sec. When K. is adjusted to 3, the step response
that satisfy all the specifications (P.O. = 4 %, t, = 0.55

G (5)G,(s) =
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sec, eg(t) = 0), is also shown for comparison. It is noted
that when K, is increased, the effect of output
disturbance is decreased.

_ Kc=113 PO 1%
. Kc=3, PO 4%
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Fig. 5 Step responses of the controlled system (type 1)

Example of a plant with uncertain parameters

If +25% parameter deviation occurs, the transfer
functions of G.(s)G,(s) in the previous example (type 0)
with controller parameters remain unchanged are

K. (s+8.182)% (s +2.2)s +2.3)s+3.4)
s(s+1.25)s+2.5)* (s +3.75)
(+25%),

G.(5)G,(s) =

and

(s+8.182) (s +2.2)s+2.3fs+3.4)
s(s+0.75)s +1.5)* (s +2.25)

K
G ()G ,(s) =

(-25%).

The step response of the controlled system (type 0)
without parameter deviation compared to the step
responses with £25% parameter deviation for the gain
K. = 0.906 and K. = 2, are shown in Fig. 6 and Fig. 7
respectively. It can be concluded that the system
performances remain essentially unchanged when the
gain K. > 2.

1.5 T r -

Ke =09086
_. Parameters unchanged
- - Parameters +25% changed
_ . Parameters -25% changed

Amplitude

25 3
Time {second)

Y- R TR 35 4 a5 s
Fig. 6 Step responses of the controlled system (type 0)
with parameters unchanged and +25% changed
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Fig. 7 Step responses of the controlled system (type 0)
with parameter unchanged and +25% changed.

6. Conclusion

The PID x (n-1) stage PD controller designed by the
root locus technique has been proposed in this paper.
The merits of this controller are that it can be applied to
the high order plant instead of the conventional PID
controller. With this proposed controller, the controlled
system can be approximated as a second order system.
For all positive values of the gain K, all of the roots of
the characteristic equation of the controlled system are
located on the left half of the s-plane. By increasing the
gain K higher than the designed value, the step response
is satisfied both the transient and steady state response
specifications.
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Faster response with a little overshoot can also be
obtained. Furthermore, the designed value of the gain K,
of this proposed controller is small, then only low gain
amplifier is needed. That is, the controlled can be made
stable and robust. Moreover, the controller rapidly
eliminates the effect of the output disturbance. All these
merits are confirmed by the simulation results which
clearly show that the controller can be applied to the
plant with +25% parameter deviation.
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