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Abstract

In this paper, we consider numerical solution of a H-
J-B (Hamilton-Jacobi-Bellman) equation of elliptic type
arising from the stochastic control problem. For the
numerical solution of the equation, we take an approach
involving contraction mapping and finite difference
approximation. We choose the Itd type stochastic
differential equation as the dynamic system concerned.
The numerical method of solution is validated
computationally by using the constructed test case. Map
of optimal controls is obtained through the numerical
solution process of the equation. We also show how the
method applies by taking a simple example of nonlinear

spacecraft control.

1. Introduction

Dynamic programming method developed by R.
Bellman[1] can be considered as a powerful method of
optimal control problem in the sense that it yields
necessary  and sufficient optimal solutions.
Computational solution of the optimality condition,
namely the H-J-B equation(Bellman equation), is very
difficult due to the complexity and the dimentionality

involved in the solution process. In this paper, numerical
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solution of the Bellman equation arising from the
stochastic control problem with infinite time horizon is
obtained. In this case, we solve the elliptic type Bellman
equation which is a nonlinear partial differential
equation. We discretize the Bellman equation applying
the finite difference method described in [2], and
modified the discrete Bellman equation to the fixed point
form using contraction mapping method [3.4] for the
iterative numerical solution of the equation. Test case is
also constructed in order to validate the numerical
scheme. Map of optimal controls is also obtained for

both test case and engineering example.
2. The Bellman equation

The Bellman equation also known as the dynamic
programming equation arises in the general classes of
stochastic control problems such as optimal regulation,
tracking and stopping. We take the following stochastic

dynamic system which can be either linear or nonlinear.

d(¥%)(s) =m{(s,ys(s))ds + Zo}}(s,y;‘(s))dwj(s)

J=1

(1)
i=12,...,n

where

is a standard Wiener

Yi(0)=x={x;,%3,..., %, }, W;



process, and y¥(s) represents the solution of (1) at time
s evolved from x with control 4 .

Equation (1) is called the It6 stochastic differential
equation if m}

and o} satisfy the so called Ity

conditions [5]. We take the following Bolza type of cost

functional which can be used for the problem of

regulation or tracking. The costs f“(-)and () become
quadratic function in case of regulation or tracking
problem, i.e. refer (16).

J(x,u)=

Eoul j: ) ) (10 () exp (- [ 4O () (6))do}ds
(u)
+<o(y;‘"(“”(r(u))>exp{-£ OO (Y da)) (2)

where
E,., : conditional expectation for {x,u} ,

U = {u,up,u3,...} : set of all possible control actions,
u(s)=u;,

7%(),0(): costs of random process in the domain (Q)
and boundary (5Q) of y“*), refer (16) for quadratic case,
49+ discount factor, |

W) =inf{r>0,y2 (1) eQ},and  E, t(u)<wo for each

xedQ.

Let v(x)=ir(1/fJ(x,u). 3)

Now applying the dynamic programming approach [1]
and Itg's lemmaf[S] to (1),(2),(3) yield the following
Bellman equation as the optimality condition, which is an
elliptic nonlinear partial differential equation.

mag({L“ (x)v(x)— fH(x)}=0forxeQ }(4)

v(x)=o(x) for xQ
where
L) ==Y afi(x)
ij

1
al= —Z-ZG}',C(x)G‘}k(x), bY = —mf(x)
k

8’ d
g B ()2 + % (),
ax,-axj " IZ ‘ (x) axi te (X)
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3. Numerical Solution of the Bellman equation

Finite difference discretization [2] of the Bellman

equation yields the following equation.
D¥v,— f¥y =0 where i,j=12,.,N 5
ng{; §vj =S} =0 where i, (5)

Modifying the discrete Bellman equation to the form of a

fixed point iteration [3,4] yields

v = %{ZH;;V i+ 1 (6)
J
where
2 P ,
Hj = if i#j, 0 otherwise
ii
oot
i D

4
4. Construction of a Test Case

The actual performance of an algorithm might be
different from what we expected in term of mathematical
reasoning. Thus, we construct a test case[6] which can
solve the Bellman equation exactly. By comparing the
numerical solution with the exact one, the performance
of the algorithm can be examined and validated.

For simplicity, we take a 2-D case for the domain of
the test case. As a cosequence, let domain Q be
rectangle (Figure 1) such that

Q={(x,x,):0<x <a,0<x, <5}.

In view of the boundary condition of the Bellman
equation, the following can be assumed as the exact
solution.

V(xy, %) = 0(xp, %2 ) + AE(X;,%7) (N
where

0%y, X5) = X, (%, — @)%, (x, —b)

E(x1, %) = {3 (3% = @)} {xy(x, — )P



*2

Fig. 1. Domain of the test case

Then v(x,x;) satisfies the boundary condition of the

following Bellman equation.

T:B({Lu(x],xz W(xp,x,) — f (xl,xz)} =0

for (x;,x,)eQ
v(x;,x,) =0 for (x;,x,) € 0Q
where

& d

u — _ u - u - u
L (x,%y) = Zay axiaxj Zm, o, +c
i) i

In order to guarantee the uniqueness of solution{5], we
take the operator L‘(¥1,x2) in the following form.

L"(xl,xz) =

N & .0 .8, (0)
—(a11+8)&? (’152*‘8)&»3 +4 &, +b &, +c

Since v(x1,%2) and L*(x1,x2) can be obtained from (7)
and (10) respectively, every term in the Bellman
equation (8) except f“(x1,%2) is known. Thus if we
choose f“(x1,x2) so as to satisfy the equation (8),
v(x,¥;) become the exact solution of the Bellman
equation. Let " be the optimal control and take only

two values.

u eU = {u,u)

Assume

u =y for O<x, si, and

u =u, for/ <x, <b (Figure 1).
If the optimal control is %, the Bellman equation
becomes

L (g, )v(%3, %) = 1 (%1,%,) = 0 for u, an
and

L' (3, (31, %) = £ (%1,%,) < 0 for u, (12)
Let &°(xp,x) = L' (3,2, Jv(x,%5) .

Then for (11) and (12),

F0a,x) = 84(x,%5) |

S (%)= 8" (%, %)+ for any (>0

For the case that ¢/, is the optimal control, /™ (x1,X)

. . u
can be chosen similarly. As a consequence, / (x1,%;)

can now be determined explicitly using the following

expressions.

fu(xl’x2)=
g“(x,%,) if (x; </ and u=u,)or(x, >/ and u=u,)
g“(x%, %) + ¢ if (x, </ and u=u,)or(x, >/ and u=u,)

5. Engineering Example

With the construction of a test case, the Bellman

equation can be solved not only analytically but also

numerically. We take 0j and ;' in the following

form which represents simple nonlinear attitude

dynamics of a spacecraft[7].

[0 0
y 0 - 60 (Sin X + noxz) ’
*2
mt = .

The following set € is taken as the domain of the
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example.

Q={(x,x):~l<x <l,-1<x, <1}

We take the following quadratic cost functional for the

test case.

J(x,u)=E,[ ‘[(u)exp(—cs){YT(s)QY(s) +rut}ds

+exp{-ct(w)}Y 7 (1(w))SY (1(u))]

where

Y(s)z[(y:)l(s)}
(¥5)2(s)

Take 0 =1 =5 for simplicity.

(16)

6. Computational Results

In this section, computational results for both of the
test case and the application problem are presented and
discussed. The following types of errors are introduced
in order to measure performance of the algorithm and
also check correctness of the computational results. -
Absolute error : Efbs = max | v —v |

¥ !

Relative error : E},; = max | v] —v]'~
H

where v and v, represent the numerical solution at 7,

iteration and exact solution respectively.

Figure 2 shows the property of contraction mapping,
i.e. rapid decrement of the relative error. Figure 3 shows
that the absolute error remains constant after certain
number of iterations, which we call the steady state error.
This gap of error can be reduced if number of grid points

taken for finite difference approximation of the operator

I*(x) is increased, and more terms are included in the
Taylor series approximation of the operafor. Table 1
shows that error decreases as the number of grid points
increases. This is reasonable in terms of finite difference
approximation that more grid points yield better solution.
Figures 4 show the effect of discount factor on the
performance of the algorithm, namely bigger discount

factor gives smaller absolute error. Figure 5 shows the
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map of optimal controls obtained for the test case, which
is exactly same as the a priori map (refer Fig.. 1). Figure
6 shows the map of optimal controls for the example
problem. Based on the above discussions, we can

conclude that the algorithm gives correct solutions.

7. Conclusions

In this paper, we obtained numerical solution of an
elliptic type Bellman equation arising from the stochastic
control problem. The Bellman equation of elliptic type is
solved by employing the finite difference approximation
and contraction mapping method. A test case is
constructed in order to solve the Bellman equation not
only numerically but also analytically. Consequently, the
numerical solution is validated using the test case, i.e. by
comparing errors etc. Computational results of the test
case show that the algorithm yields reliable solutions. As
a result of computational solution, map of optimal
controls are obtained for both of the test case and

example problem.
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Fig. 2. Relative error vs # of iterations
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Fig. 4. Effect of discount factors
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Fig. 5. Map of optimal controls
for test case (6 x 6)
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Fig. 6 : Map of optimal controls for example problem

Table 1. Effect of number of grid points

# of Grid Steady State Remark
Point Error
(absolute)
6x6 0.2236E-01
8 x38 0.1831E-01
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