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Abstract

In this paper, a robust fault-tolerant control scheme for
robot manipulators overcoming actuator failures is pre-
sented. The joint(or actuator) fault considered in this
paper is the free-swinging joint failure and causes the loss
of torque on a joint. The presented fault-tolerant control
framework includes a normal control with normal(non-
failed) operation, a fault detection and a fault-tolerant
control to achieve task completion. For both no uncer-
tainty case and uncertainty case, a stable normal con-
troller and an on-line fault detection scheme are pre-
sented. After the detection and identification of joint
failures, the robot manipulator becomes the underactu-
ated robot system with failed actuators. A robust adap-

tive control scheme of robot manipulators with the de-

tected failed-actuators using the brakes equipped at the
failed(passive) joints is proposed in the presence of para-
metric uncertainty and external disturbances. To illus-
trate the feasibility and validity of the proposed fault-
tolerant control scheme, simulation results for a three-link
planar robot arm with a failed joint are presented.

1 Introduction

In modern robotics, the reliability and safety based on
fault detection and accommodation (FDA) play a key role
in the operation of autonomous and intelligent robotic
systems. Fault tolerance is increasingly important for
robots, especially those in remote or hazardous environ-
ments such as space, underwater, nuclear, and medical
environments. Robots need the ability to effectively de-
tect and tolerate internal failures in order to continue per-
forming their tasks without need for immediate human
intervention [7] [8].

In this paper, a robust fault-tolerant control scheme for
robotic systems is developed in the presence of parametric
uncertainty and disturbances. A fault detection method
for joint failures in robotic systems is proposed for both no
uncertainty case and uncertainty case. After system faults
in a robot are detected by the presented fault detector, a
robust fault-tolerant control overcoming the uncertainties
and actuator failures is presented to achieve task comple-
tion for the robot. A robot manipulator with failed actu-
ators can be considered an underactuated robot manipu-
lator with less actuators than total joints. To show the
feasibility and robustness of the proposed fault-tolerant

control scheme, simulation results for a three-link planar
robot arm are presented.

2 Dynamics of Robot Manipula-
tors

Using the Lagrangian formulation, the dynamic equation
of an n-link rigid robot manipulator can be written in
joint space as follows:

M(q)§ + F(g,q) = u+d(t) (1)

where g € R" is the joint coordinates, M(q) € R™*" is the
symmetric, bounded, and positive definite inertial ma-
trix, F(q,4) = C(g,4)d + G(q), C(gq,4)¢§ € R" represents
the centrifugal and Coriolis torques, M(q) — 2C(q,¢) is
skew-symmetric, G(q) € R" is the vector of gravitational
torques, d(t) € R is a bounded external disturbance vec-
tor, ||d(t)|| < dmar Where dp,, are unknown positive con-
stants, and v € R" is the control torques.

Property 1: There exist positive constants Mmin, Mmaz,
Cmaz; Ymaz, fg and f. such that Mpmin < ”M(Q)” <
Mimaz, IC(q, )l < cmalldll, IG@)l <
gmazs 1F (@, DI < fo + fllgll?.

3 Fault-Tolerant Control Frame-
work for Joint Failures

The term free-swinging failure refers to a hardware or soft-
ware fault in a robot manipulator that causes the loss of
torque (or force) on a joint. Examples include a ruptured
seal on a hydraulic actuator, the loss of electric power, and
a mechanical failure in a drive system. The joint(or actu-
ator) failure considered in this work is the free-swinging
failure rather than the locked-joint failure having an in-
ability to move. After a free-swinging failure, the failed
joint moves freely under the influence of external forces
and gravity.

In this section, a fault-tolerant control framework for
joint failures of robot manipulators is shown in Fig. 1.

4 Fault Detection for Joint Fail-
ures

The procedure of the presented on-line fault detection is
shown as follows:
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1. Detect_Fault : Detection of a joint(or actuator) fault.

2. ID_Fault : Identification of the joint location of that
fault.

In this section, a fault detection method for joint fail-
ures is presented for two cases of no uncertainty case and
uncertainty case.

CSTART O

[ Coutrol of the Nocmal(Noo-Filed) Robot ¢

YES !

1

ID_Fault : Tdentification of the Joint Locstion of |
the Detocted Fault \

1 l 1

| A fault locstion is identified? YoNo - NO_1 |
1

Fig. 1. A Fault tolerant control framework for
joint(actuator) failures of robot manipulators.

4.1 No Uncertainty Case

The controller used for the normal operation of a robot
manipulator with no parametric uncertainty and no dis-
turbances is the Computed Torque Controller (CTC) with
PD feedback control. The well-known CTC for the robot

manipulator is as follows.
u= M(q)(ds — Kué — Kpe) + F(g.4) @)

where e = ¢ — g4 € R" is the joint tracking error, and K,
and K, are n X n positive definite constant diagonal gain
matrices.

Substituting (2) into (1) with no disturbances (d(t) =
0), the closed-loop stable error dynamics is obtained as
follows:

é+ K,é+ Kpe=0. (3)

Therefore, the tracking errors e and ¢é are globally expo-
nentially stable.

At first, the reference normal joint position signal to
compare with the actual joint position signal of the ma-
nipulator operating currently is needed to detect a joint
failure. The reference normal joint position signal is ob-
tained numerically by updating the known robot model
when the computed torque controller (2) is applied. The
actual joint position signals from the real manipulator’s
joints are measured by the encoders equipped at the joints
when the same computed torque controller (2) is appled.

The criterion for detecting a joint failure is as follows.
Let g, be the reference normal joint position vector rep-
resenting the no-fault state.

€y =q—Ge €R" (4)

where e, is the joint position error between the actual
joint position and the reference normal joint position. The
first detection stage, that is, Detect_Foult condition is as
follows:

e No fault : continuing the control loop
if |lec |l = 0

e Occurrence of a fault : go to ID_Fault stage

if |leql # 0.

The next detection stage, that is, ID_Fault stage is the
stage for identifying the location of the failed joint imme-
diately as soon as a joint fault occurs. In this step, the
several reference joint position signals are needed to com-
pare with the actual joint position signal after the fault is
found. Because the actuator fault dealt with in this work
is the free-swinging failure, it means the loss of a torque.
If an n-joint robot manipulator has p failed joints, the
number of the reference signals are as follows:

intE(n:ﬂ) nl
- (5)
~ pl(n—p)

where it is assumed that the number p of the failed joints
is the maximum integer less than n/2. Thus, ‘int(z)’
means the greatest integer less than or equal to the argu-
ment .

In this stage, the initial values of the reference signals
are set as the same values of the actual signals at the fault
occurrence time. The reference joint position signals are
updated numerically by the known robot dynamics with
the failed joint torques. For the i-th joint failure, the i-th
joint torque is u; = 0. The remaining normal joint torques
without any fault are obtained from the values given by
the computed torque controller.

The criterion for identifying the location of the failed
joints is as follows. Without loss of generality, let’s con-
sider a 3-joint planar robot manipulator to simplify the
problem. For this 3-joint manipulator, the number of the
needed reference signals is 1?—;, = 3. Let g, be the refer-
ence joint position vector representing the occurrence of
the ¢-th joint failure.

e, =q—q; for i=1,2,3 (6)
where e, is the reference joint position error. For this
3-joint manipulator, the second detection stage, that is,
ID_Fault condition is as follows:

1. Case 1 : Failure at Joint 1 if [le;,|| =0
2. Case 2 : Failure at Joint 2 if |les,|| =0
3. Case 3 : Failure at Joint 3 if |le|| = 0.

Now, under the uncertainty such as parametric uncer-
tainty and external disturbances, a fault detection strat-
egy is discussed in the next subsection.

4.2 Uncertainty Case

The computed torque controller (2) with PD feedback
control cannot be used in the presence of uncertainty.
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Therefore, we use a robust adaptive control scheme for
the successful tracking control under the uncertainty.

A robust control law overcoming the uncertainty can
be summarized as follows:

u = —M(—ijg+Aé)+ F+u €R (7)
. S
Uy = —Ks—pl—lg*lm, e>0, (8)
po= 0%, v=(1 1dl® llgall llell llgllisih™ (9)
5o o lsl® 5
0 = D(ye— o0 e®, 0>0 (10)

where ¢4(t) is a twice differentiable desired trajectory,
e = g — qq is the joint position error, s = é + Ae is the
augmented error, and A, K and I' are positive definite
constant diagonal gain matrices. ‘

The stability and convergence are shown by the follow-
ing Lyapunov function approach. Let’s consider a Lya-
punov function as follows,

17 1srn1j
where § = § — 6 € R5.

Consequently, the derivative of the above Lyapunov
function can be obtained as follows:

V< Dun@IP + o llsl) (12)

where z = (sT §7)T, Q = ( 2K 0

%0T09+ p%. Therefore, the errors e and é are globally
uniformly ultimately bounded.

In the presence of uncertainty, it is very difficult to de-
tect a joint failure because it is hard to obtain the accurate
reference normal signal. Therefore, in the first stage, that
is, Detect_Fault, the tracking position error e and velocity
error € are used, instead of the reference joint position
€ITOr €.

The actual joint position signals from the real manip-
ulator’s joints are measured by the encoders equipped at
the joints when the presented robust adaptive controller
(7) ~ (10) is appled.

The criterion for detecting a joint failure is as follows.
The first detection stage, that is, Detect_Fault condition
is as follows:

e No fault : continuing the control loop
if [lell? + [lell* < Be

e Occurrence of a fault : go to ID_Fault stage
if [lelf* + [l€]l* > Be.
Here, the error bound B, can be set as follows.

e Regulation Problem :
Be = [llesll+ (lleill + eio — llesIDexp(=Bit)]? + [lléf ]l +
(Ne:ll + éio — llésl)exp(—Bat))?

e Tracking Problem :
— When |le;]| # 0,

Be = [llegll + (llell + eio — lleslexp(=Bit)]? +
[lesll + (&l + éio — llésl)exp(—Bat)]?

o o) and (o lsl) =

— When |le;|| =0,
B = |les|I* + llés|f?

where e; is the initial value of the position error e, €;, is a
user-defined initial offset value of the position error e, é;,
is a user-defined initial offset value of the velocity error
e, ey is a user-defined final value of the position error e,
81 >0, and 85 > 0.

As mentioned above, when an n-joint robot manipula-
tor has p failed joints, the number of the reference signals

needed in the second stage ID_Foult are Z;’ﬁ"/ 2 p!(:ip)!.

In this stage, the initial values of the reference signals
are set as the same values as the actual signals at the
fault occurrence time. For the i-th joint failure, the i-
th joint torque is u; = 0. The remaining normal joint
torques without any fault are obtained from the values
given by the presented robust adaptive controller. The
reference joint position signals cannot be accurately up-
dated numerically by the robot dynamics with the failed
joint torques because we do not know the accurate robot
parameters. Therefore, the strategy for identifying the
location of the failed joints under the uncertainty can be
shown as follows.

Without loss of generality, we consider the same 3-joint
planar robot manipulator as the above case to simplify
the problem. For this 3-joint manipulator, the number
of the needed reference signals is T:'%' = 3. When the
reference joint position error e is denoted as (6), the
second detection stage, that is, ID_Fault condition for this
3-joint manipulator is as follows:

1. Case 1 : Failure at Joint 1 if |je,, ||>+ {lé., ||* < B, and
“502”2 + ”é62“2'> B¢ and ”eq“2 + ”éC3”2 > B..

2. Case 2 : Failure at Joint 2 if |le,, |2+ ||é, ||* > B, and
llecall” + llée,|I* < Be and Jle|” + llé|I* > Be.

3. Case 3 : Failure at Joint 3 if ||e,, ||* + ||é, |> > B, and
llec,|I? + lléc, l|* > Be and [lec,||* + lléq,|1* < B..

4. Else : Calculation of ey, = min(|leq, ||, llecll: llecll)
and épp = min(”éq Il ||éc2”, ”éc;”)

(a) Case 1 : Failure at Joint 1 if ey, = |le, || and

Emin = [|éq [|-

(b) Case 2 : Failure at Joint 2 if epn = ||eg,|| and
Emin = ”602“

(c) Case 3 : Failure at Joint 3 if ey, = |leg,|| and
Emin = Het:3”

(d) Else : No decision for a joint failure : continuing
the control loop

Here, B, is a user-defined small positive constant selected
appropriately.

5 Robust Fault-Tolerant Control :
Robust Control of Underactu-
ated Manipulators

The failed joints are called the passive joints. The remain-
ing normally operating joints are called the active joints.
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The passive joints has brakes instead of failed actuators.
It is assumed that the brakes equipped at passive joints
operate normally.

After the failed joints are detected, the robot manip-
ulator system behaves as the underactuated manipulator
with less actuators than total joints. Therefore, the con-
trol of the underactuated manipulator with the failed ac-
tuators is presented as follows to achieve task completion
thereafter even if a joint fails.

The control objective considered here is the regulation
that all joints get converged to their desired set-points.
The control procedure of an underactuated robot manip-
ulator in joint space is as follows.

1. Mode 1 : Control of all passive joints; Control
all passive joints using the dynamic coupling between
the active joints and the passive ones.

2. Mode 2 : Braking of all passive joints; Brake
each passive joint as soon as they reach their set-
points with zero welocity. Practically, the desired
small position and velocity error bounds of the pas-
sive joints are a priori defined. Wait until all passive
joints are locked.

3. Mode 3 : Control of all active joints; Control
all active joints by a new control law.

From the above control procedure, two control stages
are needed to control all joints. These control laws are
developed in the following subsections.

5.1 Control of Passive Joints
This equation (1) can be partitioned as follows.
(Ma,a Map)(qa)+<Fa>=< Ta+da(t) )
Mp, My dp Fp Op + dy(2)

(13)
where ¢, € R is the position vector of active joints,
g, € RP is the position vector of passive(failed) joints,
u=(rf O;{)T, 7, € N is the actual control torque input
vector applied to the active joints, Op, € RP is the zero
vector at the passive joints, and d(t) = (dI dZ)”.

The dynamic equation for the passive joints using the
partitioned dynamics (13) can be obtained as

Gp = Mypr, 7o + H, € RP (14)

where My, = — My Mo Myt My, = My, — My M My,
and H, = —~ M., Fy — M'F, + My, do + M3'd,.

The position error and the augmented error of the pas-
sive joints are denoted by e, = g, — q,, and s, = é,+ Ape,
where gp, is a desired position vector of the passive joints
and A, = AT > 0.

A robust passive joint controller is presented as follows:

ra= ME, (Vo B,) €R, V, = Vo + AV, (15)

Vo = Gpy — (Kp+ Ap)ép — Kphpe, € R, (16)
(87

AV, = —p —F __ ¢ RP, 17

» = TP ol (4

Bo = 0705, Wy = (11117 el liéol llesll)™ € R, (18)

A ¢p||ap||2 5 )
6, =T, 2L _5.0,),0,>0,ap,=Rpsp, (19)
p 4 ('Yp(“ap”) p¥p P P RP P

where M} € R™P is a pseudoinverse matrix of M,
with nominal dynamic parameters obtained as Mpﬁ =

Mp:'; (Mzm ij;a)‘l under the assumption of 12 p and the

full-rankness of Mpa. ﬂp = —Mmﬁ’a -M, I:’p, K;, R,
and I'; are positive definite constant diagonal matrices,
and v,(|lap]]) is a chattering alleviation function such as
Yo(llepll) = llepll + €p With ¢, > 0.

The closed-loop error dynamics for s, becomes $, =
~Kpsp + AV, + np where 7, = (MmM;f” - Ip> Vo, +

(Hp ~ My, Mp#, Hp) is the lumped uncertainty term and
I, is a p x p identity matrix.

Assunr}ption 1: There exists ¢g¢ > 0 such that
IIMmMpﬁ -Lll<e<1.

Property 2: By Property 1, there existc; >0 andc2 > 0
such that || Hy — My, M7 Hyll < 1+ callgll®.

Property 3: By the definition of the controller and when
0,(0) > 0, there exist c3 > 0 and cs > 0 such that ||V, || <

lldps | + csllépll + callepll + 2y

el < B, + 05, |1G11% + g (lldips | + Bp) + O, l€p 1|+, e
where 0, = ¢, Op, = ¢z, Op, = ¢, O, = coc3 and §

i

CoCy4.
Theorem 1: Under Assumption 1, the proposed con-
trol system (15) ~ (19) guarantees that the errors of the
passive joints are globally uniformly ultimately bounded
(GUUB).
Proof: Let’s consider a Lyapunov function candidate,

V= (1/2){5;1;311311 +(1- 9;:3)551‘;191»} = (1/2)ngp(zp )

20

where 0, = 0, — 0,, 0, = 0,,/(1 — 0,,) and 2, = (s7 61)7.
By some effective manipulations, V < —zg Qpzp/2 +
Wp(Pp: Ppy llapll) where Qp = block_diag(2R,Kp, (1 —
0,,3)0',,) and wp(/’p:ﬁp’ ||C_’p”) = (1_“ 9p3)9g<7p9p/2 +

llewlle(llapll) — llopll][2obe + £o(1 = 65,)1/ (Nl )
Since both s, and 6, are GUUB as [s,| <
[QV//\min(Rp)]l/2 and Hop” < [ZV/((I - 0p3)/\min(r;l))]l/2»
the errors e, and €, are also GUUB. See [9] for the details.
]

5.2 Control of Active Joints

Since all passive joints g, are locked by their brakes, g, =
Gp = 0. Thus the dynamic equation for the active joints
of the robot with the locked passive joints is

Go= Mglr,+ H, € R (21)
where Hy = — Mg (Fo = da), Moz = Moo — MopMy,! My,
F,=F, - MapM,;ple and d, =d, — MapMp;Idp.

The position error and the augmented error of the ac-
tive joints are denoted by e, = g, — q,, and s, = é, + Age,
where ¢, is a desired position vector of the active joints
and A, = Al > 0.

A robust active joint controller is presented as follows:

Ta = _Maa(—da,l + Aaea) + Fa +71, eR,
—-K,s, + AV,

(22)
(23)

T
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Sa
AVa — —Aa——_’y
Pe alsall)

pa = 00, o= (114l Ndasll Néall dlllsall)” , (25)

) 2 A i
6, =T, (M —aaea) eR® 0,>0,
7a(”5a”)

(24)

(26)

where K, and I', are positive definite constant diago-
nal matrices, v,(||sall) = l|sall + €2 with €, > 0 such as
Yo(llapl)). )

The closed-loop error dynamics for s, becomAes M, 8, =
_(Ka+%Maa)sf+AVa+na where 1, = (Mg —Mgo)(—6a,+
Agés) — (F’a - ﬁ‘a) +d, + %]\;Iaasa is called lumped uncer-
tainty.

The norm of lumped uncertainty can be bounded as
[mall < By + 0o, G11* + Oayllday | + Ba,lléall + Oasllgll]Isall =
95% = Pa- ‘

Theorem 2: If we apply the proposed control law (22) ~
(26) to the underactuated manipulator with the locked pas-
sive joints, then the errors of the active joints are globally
uniformly ultimately bounded (GUUB).

Proof: Consider a following Lyapunov function candi-
date,

V = (1/2){sF Myysq + 0T26,} = (1/2)2F Pz, (27)

where 0, = 6, — 0, and z, = (sT 6T\,
By some manipulations, V < —27Q,2,/2+we(pa, ||Sal])

where Q, = block-diag(2K,, 0,) and wq(pa, |Isall) =

0 7084/2 + pallsallvalsall) — lsall/7alsall). ”
Since 5, and f, are GUUB as |lsal| < [2V/ Amin(Moa)]
and ||,]| < [2V/Anin(T;1)]Y?, €, and &, are GUUB. =

Remark 1: If (e, = 0, = 0) and (¢, = 0, = 0) in the
controllers, then the closed-loop control system is globally
asymptotically stable.

6 Simulation Study

The robot manipulator to be simulated is a three-link
planar robot arm (n = 3).

The simulated three-link planar robot manipulator is
shown in Fig. 2.

Y

Fig. 2. A three-link planar robot manipulator.

The simulations are performed for two cases: 1. Case
1: No uncertainty case; 2. Case 2: Uncertainty case.

In order to achieve the normal operation of robot con-
trol, the computed torque control (2) with PD feedback
and the presented robust control (7) ~ (10) are used for
Case 1 and Case 2, respectively.

The numerical real and nominal parameters of the sim-
ulated manipulator are given in Table I. It is assumed that
the lengths of each link are exactly known. The nominal
dynamic parameters used in the robust controller are set
to 70% of the real dynamic parameters.

Table I. Numerical parameter values of the simulated
three-link manipulator:
[(L1,mu, Iy, La) = (Lo, my, Iy L) = (L3, ma, I3, Les))-

i Parameters | Values || Linki (i=1,2,3) |
Length Real 0.5
[Li(m)] Nominal
Mass Real 1
[mi{kg)] Nominal 0.7
Moment of inertia Real 0.1
[Ii(kgm?)] Nominal 0.07
COM position Real 0.25
[Lei(m))] Nominal 0.175

* ‘COM’ : Center Of Mass

Each external disturbance to be inserted into each joint
is the random noise whose each magnitude is bounded by
the value of 0.5, that is, |d;(t)| < 0.5, for 1=1,2,3.

The initial positions of each joint are ¢;(0) = —5(rad),
¢2(0) = ¢3(0) = O(rad). The initial velocities of each joint
are §1(0) = ¢2(0) = ¢3(0) = 0(rad/sec). The final desired
set-points of each joint are q;, = J(rad), g2, = —5(rad)
and g3, = 7(rad).

In this simulation, it is assumed that a joint(actuator)
fault at the third joint (g3) occurs at 0.7 (sec). Thus, the
torque applied at the third joint is zero after a joint fault
occurs. The robot manipulator after an actuator failure
at the third joint becomes the underactuated manipulator
with the third joint passive. It is assumed that the failed
joint has a normal brake. It is assumed that there are no
frictions and no joint limits in the manipulator’s joints.
The sampling time is 0.01 (sec).

The fault-tolerant control results for Case 1 and Case 2
are shown in Fig. 3 and Fig. 4, respectively. For Case 1,
the detected fault occurrence time by Detect_Fault stage
is 0.7 (sec), that is, it is equal to the real fault occurrence
time. The identified joint location of the fault by ID_Fault
stage is the third joint and the time to find out the fault
location is thereafter the next sampling time, 0.71 (sec).
After 0.71 (sec), the manipulator is controlled by the pre-
sented control method for the underactuated manipula-
tor. The braking time of the failed joint is 1.88 (sec).
After 1.88 (sec), the failed(third) joint is locked and the
remaining normal active joints are controlled to desired
set-points. The angle of the passive joint is transformed
into the same angle having the value between —w(rad)
and w(rad) after it is locked by its own brake. For ex-
ample, it is the fact that 37(rad) is the same as 3n(rad)
in viewpoint of the angle. For Case 2, the detected fault
occurrence time is 0.82 (sec) and the time to find out the
fault location is 0.83 (sec). The braking time of the failed
joint is 2.06 (sec).

From the simulation results, a joint failure at the
robot’s joint has been successfully detected and recovered,
and the original control objective has been achieved. It
has been shown that the proposed robust fault-tolerant
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control scheme is feasible.
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Fig. 3. Control results for Case 1 (without uncertainty).
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Fig. 4. Control results for Case 2 (with uncertainty).

7 Conclusions

In this paper, a study on the robust fault-tolerant control
of robot manipulators overcoming an actuator failure has
been performed. A fault detection scheme for both no
uncertainty case and uncertainty case has been proposed.
The proposed fault detection scheme uses only encoders
and tachometers to measure the position error and veloc-
ity error and does not require any other special hardware
for detecting a joint failure. A robust adaptive control
scheme for underactuated manipulators with failed actu-
ators has been proposed using the brakes equipped at pas-
sive joints. The proposed control scheme does not need a
priori knowledge of the accurate dynamic parameters and
the exact uncertainty bounds.

It has been observed that the proposed fault-tolerant
control scheme is feasible and robust through simulation
results.

The robust fault-tolerant control for robotic systems is
more useful in remote or hazardous areas such as space,
underwater, nuclear power plants, etc. where the repair
or replacement of failed actuators is very difficult.
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