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ABSTRACT

Importance Sampling (IS) has been applied to accelerate the occurrence of rare events. However, it has a
drawback of effective biasing scheme to make the estimator from IS unbiased. Adaptive Importance
Sampling (AIS) employs an estimated sampling distribution of IS to the system of interest during the
course of simulation. We propose Nonparametric Adaptive Importance Sampling (NAIS) technique
which is nonparametrically modified version of AIS and test it to estimate a probability of rare event in
M/M/1 queueing model. Comparing with classical Monte Carlo simulation, the computational
efficiency and variance reductions gained via NAIS are substantial. A possible extension of NAIS

regarding with random number generation is also discussed.

1. Introduction

Simulation is a very useful tool for assessing the performance evaluation of ATM networks. The
desired cell loss probability in ATM networks is in the range of 10° to 102, according to service
characteristics which make it computationally costly to use classical simulation techniques. This
limitation has been reported in most simulation studies of ATM networks. The problems caused by this
limitation can be classified into two ways. First, the degeneration of random number stream that might
caused a repetition of random numbers. Second, excessive simulation time that may be resulted in
inflating variance of estimator and makes hard to analyze the output from simulation. There are several
fast simulation techniques to remedy this limitations; Importance Sampling, Parallel Simulation,
Regenerative Method, and Hybrid Simulation. Smith[{1997], Frost{1988], and Glynn and lIglehart[1989],

provide thorough surveys on these fast simulation techniques.
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To obtain a statistically valid estimate, one needs to have at least 10 independent replications if a direct
method is used. Unfortunately, most simulation software or programming languages can not provide a big
sequence of random numbers without degeneration (i.e., the same random numbers are repeated in a
single simulation run).

IS is a powerful technique used in the areas of rare event simulation and the success of IS is reported in
several papers. The fundamental idea of IS is to modify the probabilities of rare events that govern the
outcomes of the simulation in a way that the original low-probability events occur more frequently. To
estimate the probability of rare events, we simulate relatively high probability events with a biased
sampling distribution. The sample values from a biased sampling distribution are then adjusted to make
the final estimates unbiased. However, selecting an optimal sampling distribution that makes the events
occur more frequently is not enough; how to make it happen is a very important issue. For example, an
arbitrary selected sample distribution generates more events with an estimator of infinite variance. Hence
the main step of IS is selecting an optimal sampling distribution (often system specific) which guarantees
the variance reduction.

The burden of selecting an optimal sampling distribution can be eased by the system designer. The main
idea of AIS is the recognition that the distribution of the samples of the error events is distributed as the
optimal sampling distribution of IS.  This distribution may be used to estimate the properties of optimal
sampling distribution in iterative way in order to close the gaps between the optimal sampling distribution
and an estimate of the optimal sampling distribution.

Most of the works in IS are focused on the selection of an estimate of sampling distribution of IS in a
parametric way by Glynn and Iglehart [1989], Oh and Berger [1992, 1993], Siegmund [1976], and West
[1992, 1993]. The nonparametric way studied by Givens and Raftery [1996] can provide a prominent
improvement in selection of an optimal sampling distribution.

Zhang [1996] proposes a nonparametric method to estimate a sampling distribution of IS for a given
system, which uses the estimated sampling distribution to generate random numbers rather than
estiméting the parameters of optimal sampling distribution. He extends Nonparametric Importance
Sampling (NIS) to Nonparametric Adaptive Importance Sampling (NAIS), which is just iterations of NIS
requiring more computation. Based on AIS, our NAIS uses the initial sampling distribution conditioned
on the samples of rare enents occurred during the initial simulation run and uses Zhang’s nonparametric
idea to estimate the optimal sampling distribution.

The rest of this paper is organized as follows. In Section 2, we introduce the basic idea of IS method
and AIS method. Section 3 is devoted to NAIS method. In Section 4, we test NAIS in an M/M/1

queueing model. Conclusions and future research areas are discussed in Section 5.

2. Importance Sampling and Adaptive Important Sampling
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2.1 Importance Sampling (IS)

Let a random variable (1. v. ) X be defined on the probability space ( £2 7 P), where £2 I and Pare
sample space, event space, and probability measure, respectively. The occurrence of rare event £ is

defined as Ee I The indicator function ¢(x) can be defined as follows:

P(x) = {O otherwise.

Consider a problem of estimating the probability of rare event E :
EL[p(X)] =ty 1
where P is a measure with respect to the expectation is taken.

In a classical simulation, (1) can be estimated with N independent samples as follows :
1 &
Iu¢(x) == Z¢(x1) .
N i=]

By the Strong Law of Large Numbers, £, convergesto (., as N increases. IfE, [#(x)*] <,

a confidence interval of 4, can be constructed using Central Limit Theorem(CLT) as

(y¢(x)—Za/zﬂ/varp[qﬁ(x)/N], Hyio +Z,,,var,[¢(x)/ N] ), where Z,, is the 100(1-a/2)%

point value of standard normal distribution. Since the variance var,[@#(x)] is not known beforehand, it

should be replaced by sample variance.
Let r. v. X be defined on the probability space (£2 I, P, ) where P, is IS probability measure, and
dP, (x) be absolutely continuous with respect to dP(x) which has different (the rare events occur more

frequently) probability measure compared to dP(x). This setting implies that if the old probability

measure is positive, then the new probability measure is also positive. Then

My = Eplo(x)]= j¢(X)dP(x)
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dP(x)
dP, (x)
= [$(x)L(x)dP, (x) @
= E, [¢(x)L(x)],

where L(x)=dP(x)/dP,(x) is a likelihood ratio.
Using the samples { (@(x,), L(x)),(#(x, ), L(x;))A ,(#(xy ), L(x, )} generated from P, an

unbiased estimator /4, is given by

= [¢(x) dp, (x)

[ = —jlg,—gm,)ux, ) &

Since the likelihood ratio L(x) <1, the variance reduction is guaranteed :
E,[¢(x)* - L(x)’ 1< E, [#(x)* - L(x)]
= E,[¢(x)’].

If EP/[¢(X)2L(X)2]<OO, then the new confidence interval can be calculated as

(1) = Zg2var, [#(x)- L))/ N, 1y + 2,5\ [var, [$(x)- L())/N).  Shahabudin  [1994]

reports that there exists probability measure P, which gives variance 0, but it requires the knowledge of
the quantity of rare event. The important task in IS is to find an easily tractable measure which
guarantees the variance reduction. Therefore, it is necessary to select the optimal sampling distribution
that reflects the rare event £ well. Then the theoretical optimal sampling distribution of IS can be given

by
dP,(x) = $(x)-dP(x)/ Hy. @

Using (4), the original estimator can be calculated as follows :

dP(x)

/u:;}(x) = ¢(x,)L(x,) = ¢(x1)¢(xl).dP(X)/ﬂ¢(x) .

&)

Since the optimal sampling distribution is dependent on the unknown estimator £, ., the random

variates x,’s are can not be generated directly from the theoretical optimal sampling distribution in (4).
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Wrong selection of sampling distribution of IS in a parametric way may provide an imprecise estimator.

Adaptive Important Sampling(AIS) is thus developed to overcome this problem.

2.2 Adaptive Important Sampling (AIS)

It is obvious if we use the optimal sampling distribution then, the variance of estimate is zero as

Shahabudin [1994] notes. This implies perfect estimate of Hyx, can be obtained in a single simulation

run. The basic idea of AIS is to assume that the distribution of samples of observations collected from the

rare event occurring area and the optimal sampling distribution of IS are the same. That is,

dP(x| X € E) = ¢(x)-dP(x)/ p1,,, = dP,(x) . )

AIS uses the simulation results to estimate the parameters of unknown optimal sampling distribution.
AIS can save the computational efforts using the probability density function (pdf ) of simulation output

to estimate the parameters of unknown optimal sampling distribution, and the probability of rare event

simultaneously. An AIS algorithm is consist of several short simulations. For each run, Hyyy and

dP, (x)are estimated. Then the sampling distribution of IS is modified such that its properties match the
estimated properties of optimal sampling distribution to be used in the subsequent simulation runs. In this

way, the sampling distribution of IS becomes more like the optimal sampling distribution and the estimate

of u #0x) becomes more accurate as the simulation performs successively ( For more detailed algorithm

of AIS, see Stadler and Roy [1993}).

3. Nonparametric Adaptive Importance Sampling (NAIS)

Improperly selected family of distribution may result in variance inflation even the estimate of
parameter is accurate. For example, in a linear system with long memory, the estimated sampling
distribution of IS which increases variance and estimates the probability of rare event inaccurately. Thus
proper selection of initial distribution is still an open problem in AIS. If a prior knowledge about the
sampling distribution of IS is not available for a given system, a nonparametric approach may be more
helpful.

Based on AIS, our NAIS uses the initial sampling distribution conditioned on the samples of rare enents
occurred during the initial simulation run and uses Zhang’s nonparametric idea to estimate the optimal

sampling distribution. Silverman[1986] introduces four nonparametric methods to estimate a density
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function : histogram, kernel estimation, nearest neighbor, and variable kernel. We focus on the kernel
estimation method.

We propose the NAIS algorithm as follows :

Step 1: Initialize a simulation to collect the rare events samples x,, i=1,...., p.

Step 2 : Esitmate the optimal sampling distribution fl;, (x) using the kernel function estimation
method :

x —

h

where 4 is a smoothing parameter and K( []) is a simple rectangular kernel function such as

), ®)

. 1 &1
ﬁ)pl(x) "‘;;;K(

1

—, if x| <1
K(x)=42 f i

0, otherwise.

>

Step 3 : Run a simulation with fo;, (x) as the optimal sampling distribution of IS, and calculate

My as follows :
1 fx)
Hyix =~Z ———¢(x,),
h i=1 -f;}p’ (xl)

where # is the number of replications or the number of regeneration cycles.

5. Numerical Results
We test the proposed NAIS algorithm in an M/M/1 queueing model. Let A and g be the mean arrival

rate and the mean service rate in an M/M/l queueing model, respectively. Consider a problem of

estimating the probability & #(x that the number of customers reaches a certain queue level of 4 during a

busy period.

Now the NAIS algorithm can be described as follows :
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Step 1 : Initialize a short simulation to collect the samples of interarrival and service times when the

number of customers reaches the queue level 4 during a busy period.

Step 2 1 Use the kernel function estimation method with the samples collected from Step 1 to estimate

the optimal sampling distributions of interarrival and service times to be used later simulation.

Step 3 : Proceed the simulation with estimated optimal sampling distributions from Step 2.

The sampling distributions of IS can be decided by modification of samples of interarrival and service
times which occurred independently during interested busy period. Assume the sample path @ of reaching
the queue level 4 during a busy period occurrs at time 7 before the system becomes empty. If the number
of departures is m, then there are A+m-1 arrivals during a busy period. For any busy period, if a sample
path @ represents the arrivals and departures from the queue, then the likleihood function L( @) can be

defined as follows :

Kw)= ﬁ ACVAN H £6) ™

i=1 f (t i) 1 8 (S )
where t, : interarrival time for the /* customer
§, ¢ service time for the /" customer

~

pdf for interarrival times

sampling pdf of NAIS for interarrival times

pdf for service times

0q, 00~

sampling pdf of NAIS for service times.

For N busy periods (it could be obtained either N independent replications or N regenerative periods), the

probability 44, ., can be calculated as follows :

1 & _
Hyry = ‘ﬁZ:L(w,)°¢(w, ) i=1..N, (8)

1, if the number of customers reaches the queue level A

where @(w) = {

0, otherwise.
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We run the Monte Carlo simulation and the NAIS simulation varying the queue level of 4 for 10,000

busy periods for 10 times.

Table 1 and Table 2 show the results of the NAIS simulation and the Monte Carlo simulation,

respectively : the estimate £, ., of the probability that the number of customers reaches the queue level

of A, the standard deviation (SD) of 14, , and the half-width of confidence interval for 4., .

Table 1. NAIS and Monte Carlo simulation result of M/M/1 queueing model (10,000 busy periods)

(A=03, f=05)
Queue Ky SD Half-width
level(d) o e Carlo] NAIS | Monte Carlo] _NAIS | Monte Carlo]|  NAIS
10 2.53E-03 | 236E-03 | 2.96E-04 | 1.02E-04 | 5.80E-04 | 2.00E-04
15 140E-04 | 125E-04 | 9.66E-05 | 4.88E-06 | 1.89E-04 | 9.56E-06
20 3.00E-05 | 7.37E-06 | 4.83E-05 | 2.25E-07 | 9.47E-05 | 4.42E-07
25 6.61E-07 3.10E-08 6.08E-08
30 6.41E-08 4.82E-09 9.45E-09
35 3.27E-09 1.46E-10 2.86E-10
40 538E-11 4.78E-11 936E-11

In Table 1, the probability 1, ,, decreases as the queue level of 4 increases. As shown in  Table 2, the

probability below 10~ can not be estimated in the Monte Carlo simulation since the number of rare events

are not sufficient. The curves in Figure 1 are the NAIS and Monte Carlo (MC) simulation results

of,Ll¢'(x) .

Figure 1. Probability of customer reaches the level 4 during busy period
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Figure 2 shows the half-widths of confidence intervals of the NAIS and MC simulations. We can see that
the variance reduction is obtained by the NAIS. Since the variance is reduced, the confidence intervals
become tighter which implies the estimates become more accurate.

Figure 2. Half-widths of confidence intervals
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Conclusion

This paper proposed a modified fast simulation technique NAIS, and demonstrated in the estimation of
rare event probabilities in an M/M/1 queuing model. The experiments with NAIS in our work show the
substantial gains of computational efficiency and the variance reduction in both models compared to
classical Monte Carlo simulation. The difficulty of proper choice in optimal sampling distribution of IS
and AIS can be eased by NAIS, since we can directly use the data collected during the simulation to
modified the optimal sampling distribution regardless of the characteristics of the system. To improve
the efficiency in modifying the estimate of optimal sample distribution, a more complicated kernel
function, such as Gaussian density is worth of trial. We noted that the time for random number
generation could be saved if we use more efficient random variate generation technique. Other than
Acceptance-Rejection technique should be tested since too many random variates are discarded. It is also
desired to develop a method to guarantee an optimal sampling distribution, which is invertible in
regardless of density estimation methods. Easy random variate generation technique, such as inverse
transformation method is much faster than the acceptance-rejection method. NAIS can be used for

simulation of highly reliable systems whose general characteristics are not known beforehand.
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