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Abstract

This note addresses the problem of reliable Hy
output-feedback control design for linear systems
with actuator and/or sensor failures. An output
feedback control design is proposed which stabilizes
the plant and guarantees an H.-norm bound on at-
tenuation of augmented disturbances including all
admissible actuator/sensor failures. Based on the
linear matrix inequality (LMI) approach, the output-
feedback controller design method is constructed by
formulating to LMIs that cover all failure cases. Ef-
fectiveness of this controller is validated via a numer-
ical example.

I. Introduction

The robust and reliable control problems have
been of high interest in the control engineering field.
Recently, an attempt to tackle both problems has
been suggested by Seo and Kim[4], who developed an
ARE-based robust and reliable H, control method-
ology via output-feedback for linear uncertain sys-
tems with parameter uncertainties and allowable ac-
tuator/sensor failures. However, a prior condition is
required to solve the coupled nonlinear matrix equa-
tions for output-feedback control, which can obtain
so hardly even if its solution exists. On the other
hand, the LMI approach has a numerically tractable
algorithm due to its convex optimization[3]. Thus,
one may regard the LMI approach as an effective
alternative to the ARE-based one. A reliable frame-
work formulated in LMIs has been provided in {2]
where the cross decomposition algorithm is needed
for constructing dynamic output-feedback controller
in view of H2 optimization.

In this paper, we present new design methods
for robust and reliable H., output-feedback control
problems using a simple LMI formulation. Further-
more, our approach does not need to perform addi-

tive algorithm such as cross decomposition and deals
with soft failure type as well as hard one.

II. Main Results

In this section, we design a dynamical output-
feedback controller which can stabilize the linear sys-
tem with Hoo-norm bound ~y against any admissible
actuator/sensor failures.

Consider the following continuous-time linear sys-
tem, which is given by the state-space equations

#(t) = Az(t) + Bu(t) + Byw(t) v
z2(t) = C,z(t) + D,u(t)
y(®) = Cot)+Dyw(®)

Let an actuator failure f, € Q, be occurred. Then,
the set of actuator which operates normally is r, €
{1,2,---,m} — fa, and B, D, and u can be decom-
posed, without loss of generality, by

= (B,, B.fa)a D, =(D.-, sza) u = (ur‘, “fa)T

respectively. On the other hand, let an sensor fail-
ure f; € {1y be occurred at the same time. Then,
the set of sensor which operates normally is r, €
{1,2,---,0} — fs, and also C, D,, and y can be,
without loss of generality, decomposed by

= (CZ_: C}I_‘,)Tv (Dwr, w_f,)Tv y= (yr, yf,)T

respectively. In this framework, the system is repre-
sented by the following post-fault model.

8(t) = Az(t) + Br.u- (t) + (Bu By.) (qu,( 2))
zp (t) = C,z(t) + Dy ur () @)

wo = (G )=o+ (B2 )
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Figure 1: The output feedback control system with
actuator /sensor failures

Under the decompositions and the assumption that
Dy = 0, a dynamic output-feedback controller to
meet Ho, norm-bound on the closed-loop behavior
is formulated as

{(t) = Ax((t)+ Bky(t)
Ag((t) + Brr,yr,(t) + Br1,yz, (t) (3)
Cr((t)

ur, (t) Ckr )
a — a ¢
()= (G )ew
where Ag, Bk, and Ck are decomposed in appro-
priate dimensions.

Once the controller is applied to the system (2),
the closed loop system T, ,, is represented by

Zei(t)
Tra,r,{ Zr, (t)

il

u(t)

car.!

Aro ozt (t) + Br, r,wy, 1, (8)
Croza(t) + Dr, rowy, 1, (t)
(4)

where z,(t) = ( 28; ) € R2™ is the state of the
w(t)

closed-loop system, wy, 7, (1) = | uj,

is the ad-

s,
ditive disturbance including the elements of actua-
tor and sensor failures, z, (t) € RP is the controlled
output, and the closed-loop system matrices (A4,, r,,
B,..r,s Cro, Dr, r,) are expressed as follows:

A B A B Ck.,| Bw Bj 0
a,Ts as} BKr,Cr_q Ax BKr,Dwr, 0 BKf,

Cra | Drar \ C: D:.Ckra 0 0 0

(5)

The closed-loop system via output-feedback is de-

picted in Figure 1 . Note that the controlled output

under the failure condition is changed to z,,, vanish-
ing the effect of actuator failure.

Now, it can be reformulated in the following frame-

work. Define

. 0 Ckr,
Krairs = ( Bg., Ax ) ©)

Now in this stage, the Bounded Real Lemma must
be satisfied for the reliable control problem in order
to meet the Ho, specification[3]. Since the expres-
sions like AP + P A, however, involve products of
P and the controller variables, the resulting problem
is nonlinear. However, the LMI framework of the
output-feedback control requires the matrix variables
to change to linearize, unlike the state-feedback case,
of which all inequalities are affine easily in X = P~}
and V = KP~ L
Let us partition P and P~ as

P (e 1) (i )

where X and Y are n x n and symmetric, and * is
any arbitrary matrix. From PP~! = I, we can lead
to

. X I I'Y
PII; =11, with I; = (MT O) , Iz = (0 NT>(8)

Let us define the change of controller variables as
follows:

Arprs = NAKMT+NBx: Cr X+Y B, Crr . MT+Y AX
Br, = NBK,“ Bf’ = NBK).-“

Cro = Crra M, Cp, = Cks,M", (9)

The motivation for this transformation lies in the
following identities:

Apo v, = OTPA,, T, =10 A, I

_ ([ AX+B..C,, A
- A s, YA+ B, Cr,
Brmr.. = HTPBT‘,,T, = HgBra,r,

B, By, 0
YBw -+ Br, Dwr.s YBfa Bfa
C;,a = Crﬂnl = ( CzX +Dzraéra C: )

X I
H{Pnlz(l Y)

By virtue of the Bounded Real Lemma, the require-
ment to stabilize the system with H, constraint
T, r lloo < 7 is to satisfy two inequalities for above
closed-loop matrices A,, r., Br, r,, Cr,, and Dy, r,.
By a congruence transformation with diag(Ily, I, T)
on the lemma, we obtain the following synthesis in
the LMIs.

Ar, + AT, -, Broy, CL
Bl ., -7 0
C-. 0 -I
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AX4+XAT

AT
+B, Oyt (BeiCry)T Ao T4 T
. ATY+Y A
T
3 Arars ¥ AT B o (BCYT| T |
- BI (Y By+B,, Du-,)T 0
Bj, (YBfn)T -¥’I|0
0 BT 0
C.X + D.r.Cr, C. 000 -1
< 0 (16)
X I
I PII, = ( Ty ) >0 (11)

The controller is of at least order n, and if M and N
have full row rank and A, ,,, By, r,, Cr,, X,and Y
are given, we can always compute controller matrices
Ay, Bk, and Ck for an actuator/sensor failure.
Let us finally look at the problem in view of
constructing single robust and reliable controller
that stabilizes against all cases of admissible actu-
ator /sensor failure. Suppose that the cardinal num-
ber of Q, is I, and the cardinal number of Q, is
l;. Then, all possible number of admissible failure
cases including no failure is L = L, x L, = 2%« x 2!
and L Lyapunov matrices P, --,Pr corresponding
to all failure cases are required to meet L LMIs
(10) whose each one is assigned to the individual
speciﬁcation with (11). Since the expressions like
AT iPij+PijAijfori=1,--+,La,j =1,---,Ls,
mvolve products of P; and the controller variables,
the resulting problem is nonconvex. Thus, two spe-
cific requirements are needed to recover the convex-
ity. The first one is to have a single Lyapunov ma-
trix P that satisfies P, = --- = P = P. Second
requirement is that, in order for the controller to
conform to all specifications, the controller variables
Ak, Bg, and Ck have to be same for all failure cases.
Nonetheless, products of X, Y, and the controller
variables could not be still eliminated in the matrix
inequalities, nor assigned to new variables like V; in
the state-feedback case. Therefore, we propose the
following theorem for the output-feedback problem
in accordance with the state-feedback problem.
Theorem 1 Consider the linear system (2) with
unreliable actuators ug, and unreliable sensors yq,,
and assume (4, Bg_,Cq,) is a stabilizable and de-
tectable pair. The system is robustly stabilizable
against any susceptible actuator and sensor failure
and the Ho, constraint ||Ty, »,|lc < v is satisfied if
there exist symmetric positive definite matrices X
and Y such that the following LMIs are satisfied

As,. n+Ana a, Ba, o, C&. AZATERa. ER+TERua,
BQ ., —’721 0 0 0
0 -1 0 0
Ana+Rn,Fn,, 0 0 —Raq, 0
En_,-l—an,TQ, 0 0 0 —an,
<0 (12)

X I
(7 4)>0

where

Rq, = R{, =Dl Do, >0,
Ruo, = RIg = ;DQDQ>0

Ao, = (B, B§Y), To,=(Ca, 0),
Zq, = (Ca,X Ca, ), To,=(0 Bg{s )

Proof: Consider the system (2) has an actual failures
of f, and fs;. To meet the robust specification against
the failures, Eq. (10) has to be satisfied. Thus, the
proof suffices to show that Eq. (12) implies Eq. (10
).

By simple calculation, Eq. (10) is equivalent to

_ - 1 .
-Ara,rs + -AZ;,r, + ?Bra,r,BT

T . +CrC, <0 (13)
Now let’s express (13) in terms of the maximum fail-
ure case, that is, 7o = Q, and r; = ,. There must
be pointed out that just one controller is needed for
any susceptible failures. Since the controller matrices
Ak, Bk, and Ck are all the same for such failures,
Aroras Br,, Cy,, Ag, 0, Ba,, and éﬁa from (9) are
closely related with the following equations.

0,0,V Bk, £.C0 1. X+YBo, s Cra1.M"
By, NBka,-1, )

A
= (
(CKQ —r.M T)

Thus, (13) is rearranged to

"'a s

_ _ 1. ) _
T T AT

Aa.0, T A9, 0, + 23B0.,0.8a, 0, + Ca,Ca.

+ A Tous. + Th s

+E8, s Yo + T;‘Fz..—fﬁﬂrf, + Y8, . Rua, 1. a4,

. + Tt Racs Lot

- ——ATc. Qufa— ZTS,_ Rua 1. Yoy <0(14)

where
Ro.q, =R, _; =Dl _; Dea,-t, >0,
Rua,y, =Riq,_y, %Dwﬂa—stg:ﬂ,—f, >0,
A, =(By 5. BEsY), Tarn.=(Cars. 0),
Za,4, = (CasX Cat.), Tn,—f.=(0 Ba,—f.,)-

Now in this stage, notice that the following relations
are satisfied.

(Ag,sHRo~sTa1) Rol s (AaesitRas Lo, 1)
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=(Aq, +Ra.Ta,) Ry (Aq, +Rala.)

—(Ar+Rs s )R (A, +RiT,) (13)

EatARva 1Y) Ry (Sa s ARua 1. a1)
=(Zq, +Ruwe,X0,) Ry, (Ea, +RunXa,)

~(Ep+Rup Y1) Ry} (S5, +RusYs,) (16)
After completing the square and using the above re-
lation, the above equation is changed to the following
equation.

- - 1 - _ =
Ag, ., +AG, a0, + ?Bs‘za,rzﬁga,@, +C3.Ca,
+(Aq, +Rolo) "RoXAa, + Rala.)

+(Zq, +Rua.Yo,) Ry} (Ea, + Rua, o)
—(Ag.+Ry T ) R; A +REy)

_ 1
-Afv(Rals+ JzDAacr.
—(E5,+RuwsX 1) Ry} (s, +RusX 1)

_ — 1
Rw}z’_f;:g_._f’ - ?Tgr JTQ_,_f_. <0 (17)

_=r
—=Qf

Since the given LMI condition (12) means that the
six terms from the left hand side of Eq. (17) are less
than zero, the inequality is always satisfied. Thus
the proof is completed. O

After solving the above LMIs, we can find arbi-
trary nonsingular matrices M, N to satisfy MN T =
I — XY. Then M and N have full row rank when
I — XY is invertible. Invertibility of I — XY is sat-
isfied by Eq. (12). Finally we can always compute
the controller by

Cxs o -
o(8)- (& )wr o
BK=( Byg, Bka, )=N_]( Ba, Bn, )
Ax=N""(Ag_a-NBkaCanX-Y BaCraM—YAX)M™"

Example 1 Consider the MIMO linear uncertain
system with two inputs and three outputs. The fol-
lowing system is an extension of one used in Veillette
et al. (1992)[5] and Seo (1996)(4].

-2 1 1 1
3 0 0 1

(t)= 1 0 —2 -3 z(t)
-2 -1 2 -1
01 0 100 0
100 0000
+lo o0 |¥DT 1 g g o|¥®
0 0 1 0000 (19)
10 -1 0 0 0 0
oo o0 1 00
z(t)= 0 0 0 0 z(t) + 01 o u(t)
00 00 0 0 1
0.008 0 —0.008 0 0100
y(t)= 10 0 0|z@+|0 0 1 0w
00 10 0001

The spectrum of A is given by spec(4) = {~1.3160%

2.91941,0.1906, —2.5585}. Note that the nominal
system has an unstable mode.

Now, we try to design reliable output-feedback
controller for both actuator and sensor failures. The
corresponding LMI formulation is subjected to the
LMIs (12 ) listed in Theorem 1. After minimizing
trace(X) + trace(Y) with v = 30, we can obtain
such a controller for which all LMI-related computa-
tions were performed from the ZMI Control Toolbox
(Gahinet et al. 1995)[1].

—1.045 1227 —1.120 0.448
| -1606 1885 —1.720 0.689
CB)=10"| _'0ss 1242 —1.134 o454 | S

0674 0791 —0.722 0.289

4938 5389 5151
7577 8278 7914
4980 5455 52158 | V()
3185 3476 3323

0.586 —10.619 0.511 -0.240
-10.131 0.141 -0.107 0.038
-1.188 1.141 -0.920 -9.417

uft) = ¢(£)(20)

I1I. Concluding Remarks

We solved the reliable Ho, control problem for
output-feedback case in the context of the LMI ap-
proach. The proposed control methodology does not
only guarantee the robust stability, but also the tar-
get system is reliable in spite of the allowable actua-
tor and sensor failures.
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