'99 춘계 학술발표회 논문집 한국원자력학회

MC-50 싸이클로트론을 이용한 Na-22 제법에 관한 연구

The Study of Na-22 Production with MC-50 Cyclotron

서용섭, 양승대, 전권수, 안순혁, 윤용기, 박 현, 이지섭, 김상욱, 허민구, 임상무 원자력병원,

서울시 노원구 공룡동 215-4

유국현 동국대학교

요 약

원자력병원의 MC-50 싸이클로트론을 이용해 ²⁷Al(p,αpn) 핵반응으로 무담체의 ²²Na를 생산하는 방법에 대해 연구하였다. ²²Na는 반감기가 2.6년이고 주 γ -에너지가 1,274.5keV로서 표준선원으로 이용될 수 있다. 여기함수 측정결과 ²²Na 생산에 적합한 양성자 에너지는 26MeV 이상이었고, 43.8MeV에서 최고치의 핵반응단면적 40.8mbarm을 나타내었으며 50.5→26.3MeV에 대한 ²²Na의 생산수율은 60.9 μ Ci/ μ Ah이었다. 조사된 표적으로부터 ²²Na의 분리는 이온교환수지법을 이용하였다.

Abstract

A method for the production of no-carrier added(NCA) 22 Na was developed via 27 Al(p, α pn) nuclear reaction with 50.5MeV protons. The half life of 22 Na is 2.6 years and main γ -energy is 1274.5keV and it is used standard source and sodium catabolism study. The cross-section and thick target yield for the reaction was measured in detail in the energy range of 50.5 \rightarrow 20.2MeV in order to determine the optimum conditions for the production of 22 Na. The maximum cross-section for the production of 22 Na was 40.8 mbarn at 43.85MeV. The calculated production yield of 22 Na by 50.5MeV protons on aluminium was $60.9\,\mu$ Ci/ μ Ah. The seperation of 22 Na was carried out by ion exchange, precipitation and diffusion. It was found that ion exchange column operation using AG50W-X4 resin was the most efficient method among them.