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DEVELOPMENT OF A REFINED STRUCTURAL MODEL FOR
COMPOSITE BLADES WITH ARBITRARY SECTION SHAPES

Sung Nam Jung’, and Inderjit Chopra'
Abstract

A general structural model, which is an extension of the Vlasov theory, is developed for the analysis
of composite rotor blades with elastic couplings. A comprehensive analysis applicable to both thick-
and thin-walled composite beams, which can have either open- or closed profile is formulated. The
theory accounts for the effects of elastic couplings, shell wall thickness, and transverse shear
deformations. A semi-complementary energy functional is used to account for the shear stress
distribution in the shell wall. The bending and torsion related warpings and the shear correction factors
are obtained in closed form as part of the analysis. The resulting first order shear deformation theory
describes the beam kinematics in terms of the axial, flap and lag bending, flap and lag shear, torsion
and torsion-warping deformations. The theory is validated against experimental results for various

cross-section beams with elastic couplings.
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Introduction

During the past decade, there has been a
phenomenal growth of research activities to
develop methodology to analyze composite
tailored rotor blades. Jung er al. {1] made an
assessment of the current techniques of modeling
composite rotor blades and identified, among
others, the need for a Timoshenko type model
which will take into account such features as
elastic couplings, thickness of the shell wall and
that will be applicable to beams having open- or
closed cross-sections. The modeling of rotor
blades can be formulated through either a
displacement or a force method. The displacement
formulation, also called the stiffness formulation
has been used, among others, by Rehfield [2],
Smith and Chopra 3], Chandra and Chopra [4].
This formulation is based on suitable
approximations to the displacement field of the
shell wall. The assumed displacement field is used
to compute the strain energy and the beam
stiffness relations as well as equations of motion

are obtained through these energy principles.
In displacement based models, the distribution
of warping across the cross-section can only
be applied to simple cross-sections. There is
no systematic method to decide on the
distribution of the warping distribution to a
generic section and the choice of suitable
functions. Also, in the displacement modes of
these methods do not satisfy the equations of
equilibrium of the shell wall and lead to
overestimates of the beam stiffnesses.

In the force formulation, also called the
flexibility formulation, the direct stress in the
shell wall is assumed and the distribution of
the shear stress and the related warpings are
obtained from the equilibrium equations of the
shell wall. The flexibility method provides a
systematic method of choosing the warping
functions. The representative ones are
Mansfield and Sobey [5] and Libove [6].
While these methods give a better
representation of the shear stresses, and hence
a better accuracy, they have not found wide
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application since most of the comprehensive
analysis codes use the displacement method.

In the present work, a comprehensive analysis
which is applicable to both thick- and thin-walled
composite beams, which can have either open- or
closed profile is presented. The theory accounts
for the effects of elastic couplings, shell wall
thickness, and transverse shear deformations. The
shear related terms are obtained from the
equations of equilibrium of the shell wall. The
resulting first order (Timoshenko) shear
deformation theory describes the beam kinematics
in terms of the axial, flap and lag bending, flap
and lag shear, torsion and torsion-warping
deformations. The theory is validated against
experimental test data and other analyses for
composite beams of various cross-sections.

Formulation

Figure 1 shows the geometry and coordinate
systems of a blade. Two systems of coordinate
axes are used to describe the motion: an
orthogonal Cartesian coordinate system (x, y, z)
for the beam, where x is the reference axis of the
beam and y and z are the transverse coordinates of
the cross section; a curvilinear coordinate system
(x, s, n) for the shell wall of the section, where s is
a contour coordinate measured along the middle
surface of the shell wall, and » is normal to this
contour coordinate. The global deformations of the
beam are (U, ¥, W) along the x, y and z axes and
¢ denotes the twist about the x-axis. The local
shell deformations are (v, v,, v,) along the x, s, and
n directions, respectively. From geometric
considerations (Fig. 1) and assumption 1, the shell
displacements v° and v} at the mid-plane of the
wall are related to the beam displacements ¥, W
and @ as: '

v? =Vy  +Wz  +rd )
vp=Vz, -Wy ~q¢

where (), denotes differentiation with respect to
s.

The constitutive relations for the shell wall of
the section can be written as'*
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Fig. 1 Geometry and coordinate systems of a
blade.

where, 4°j, B'y, and D’ are modified laminate
stiffnesses for extension, extension-bending
coupling and bending, respectively. It is
convenient to write the constitutive relations in
a semi-inverted form as:

xx Cn: Cm( Cn¢ Cnr

™

xx
Mxx _ Cmr me cm¢ Cmr Kxx
My| | Cup Cmp Cp Cp||Kxs 3)
V;s —Cnr R _Cmr _C¢r Cyr Nxs
NX" = Axn}':n
In order to assess the semi-inverted
constitutive relations (5), Reissner’s semi-
complimentary energy function & is
introduced [7]:
1 k
(DR="2'[Nxx£.u+MxxKxx+Mxxsz+anrxn (4)
k
-N xsV xs]
The stiffness matrix relating beam forces to
beam displacements is obtained by using the
Reissner’s semi-complimentary energy
functional. The variational statement for the
Reissner function gives
1
1 .
5[ [@n + 575N sg)dsds =0 (5)
0

where [ is the length of the blade. Inserting the
constitutive  relations and the strain-
displacement relation into the wvariation
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equation of (5), we obtain the relation between the
generalized forces and displacements as:

F-Kg ©)

where

ﬁr =[U,x Yy ¥Vxz ¢,x ﬂy,x ﬂz,x ¢,xx] (7a b)
F=vv,v, . M, M, M,] ’
where 7, and 3, are transverse shear strains of the
beam cross-section, N is axial force, ¥, and V; are
transverse shear forces, M, and M, are bending
moments about y and z directions, respectively, T
is St. Venant Torsion, and M,, is warping moment.
Figure 2 shows the generalized beam forces acting
on the blade. The (7x7) stiffness matrix K in Eq.
(9) represents the beam stiffness matrix at a
Timoshenko level of approximation.

Results and Discussion

Numerical  predictions for  symmetric
composite I-beams undergoing different types of
loading are evaluated to validate the current
approach against experimental data and other
existing analytic beam results. The I-beams tested
has a length of 762 mm (30 in) with 25.4 mm x
12.7 mm (1 in x 0.5 in) section. The beam is
clamped at its root and warping restrained at both
the root and loading tip. The I-section has a
symmetric layup with respect to beam elastic axis
and is composed of top and bottom flanges with a
layup of [(0/90),/(90/0)/15;]r and a web with
[0/90),s. Figure 2 presents the bending slope
distribution along the beam span for the bending-
torsion coupled I-beam under a unit tip bending
load using the present mixed method and the
stiffness method. The stiffness approach used to
calculate the stiffnesses follows Smith and Chopra
[4]. The present mixed method combines both the
stiffness and flexibility formulations. As can be
seen in Figure 2, the current predictions with
mixed formulation show better correlation with
experimental data. The stiffness-based approach
underpredicts bending slope of the beam. Figure 3
presents the bending-induced twist distribution
along the beam span for the same beam under unit
tip bending load. It is surprising that the stiffness
method shows better correlation with test data
than mixed method. Imposed warping restraint at
the beam tip in analysis may be too restrictive and
overestimates torsional stiffness of beam. Figure 4
shows the twist distribution along the beam

subjected to unit tip torque. The present results
of using mixed formulation show better
correlation with experimental results. This fact
is due to the higher accuracy in estimating
bending, warping and torsion stiffnesses in the
present mixed formulation.

Conclusions

A structural model has been presented for the
analysis of composite blades with elastic
couplings. The model includes the influence of
the thickness of the wall and accounts for the
non-uniform distribution of the shear strains
due to bending and torsion. Beams of open and
closed cross-section are modeled in a unified
approach which is based on a semi-
complementary  energy functional and
combines the displacement formulation with
the flexibility formulation. The bending and
torsion warpings are derived in a closed form
and all the terms in the warpings are retained.
Comparison of results for bending-torsion
coupled I-beams shows that the present
method gives results which have a good
agreement with experiments.
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Fig. 2 Comparison of bending slope for the
bending-torsion coupled I-beam under a unit tip
bending load (flanges [(0/90),/(90/0)/15,};, web
1(0/90);],).
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Fig. 3 Comparison of bending-induced twist
distribution for the bending-torsion coupled I-
beam under a unit tip bending load (flanges
((0/90),/(90/0)/15;] 1, web [(0/90),];).
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Fig. 4 Comparison of twist distribution for the
bending-torsion coupled I-beam under a unit tip
torque  (flanges  [(0/90),/(90/0)/15;]r, web
1(0/90);],).



