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Abstract

This paper concerns a least square 

approach to optimizing a thinned antenna 

array with respect to antenna spacing to 

improve the sidelobe performance. A least 

square method based on a modified version 

of the modified perturbation method is 

proposed to efficiently synthesize an 

optimum pattern in a thinned array. It is 

demonstrated that the array performance 

improves with the proposed method, 

compared with the conventional method.

1. Introduction

The thinned antenna array is an efficient 

array system which prevents the 

degradation of array performance due to 

mutual coupling effects and also reduces the 

array cost by employing less number of 

antenna elements compared to a 

half-wavelength spaced filled array. The 

thinned array has been widely investigated 

in such areas as radar[l], astronomy[2] and 

satellite communication[3]. If the number of 

elements in a filled array is reduced, the 

sidelobe performance is degraded due to the 

less of degrees of freedom to control the 

beam pattern. The problem in the thinned 

array is how to synthesize an optimum 

pattern with reduced number of elements 

which satisfies given design specifications 

while the performance is comparable to that 

of the filled array.

In this paper, it is concerned that the 

thinned array is designed such that the 

sidelobe level is equalized in a 

Dolph-Chebyshev sense to counteract the 

interferences uniformly distributed over the 

array visual range. A certain set of element 

spacings is found by a least square 

approach with an iterative perturbation of 

element spacings with uniform array 

weights.

2. Perturbation Method [4]

The array factor of a symmetric thinned 

array of 27V elements is given by

H{(o) = 2 * “/cos (1)

where the weights at are assumed to be 

uniform, (o — Trsin 0, d is the angle from
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the array normal, di is the element spacing 

from the array center and i is element 

index.

The perturbation method[4] equalizes the 

sidelobes iteratively by perturbing the 

element spacings using an arbitrary initial 

spacing. Suppose that L sidelobes are 

located at a)i , \<i<L . Since the 

derivative of H(G with respect to each 

sidelobe wt will be zero, we have the 

following equations.

a”) = -点 言 c°응 (a)jd^
(2)

sin(s4)= 0, l<j<L (3)

In (2), the array weights are normalized 

such that the maximum gain is one at the 

array normal. The element spacings di are 

perturbed 辻erativ이y such that N sidelobes 

get closer to a specified threshold level. 

Assuming a small perturbation, the nonlinear 

equations in (2) and (3) with respect to di 

may be linearized via a Tayler series 

expansion. If the kth spacing is perturbed 

by 厶此 the (k+l)th spacing is given by

4+1 = 4+^4 (4)

Accordingly, the (/c+l)th sidelobe location 

and level is given by

苛이 =(5)

H心=心』『 (6)

respectively, where H denotes

If (4),(5), and (6) are substituted into (2) 

and (3) and simplified by a first-order 

approximation, we have the following 

equations as

—g春4加2詞)=&器，(7)

团缶必cos統器苛)+丿，苛:* “00#cos (jd")

+ 言“4異 in(〃就)=0

(8)

Assuming that 刀H： is a small fraction of 

the difference of the actual sidelobe and a 

specified threhold level, the element spacings 

are perturbed iteratively until all the 

sidelobes are equalized. It is to be noted 

that to ensure a unique solution of and 

Aa)j at each iteration, the number sidelobes 

to be controlled should be equal to the 

number of element spacings N.

In the perturbation method, the initial 

element spacings should be half-wavelength 

to have the same number of sidelobes as 

the number of element spacings, which is 

not the case in the thinned array. Also, if 

the number of sidelobes in the initial pattern 

is more than the number of element 

spacings, some of the sidelobes can not be 

controlled which results in poor sidelobes 

performance. Thus, the perturbation method 

is not suitable for the design of the thinned 

array.

3. Least Square Approach

In the modified perturbation method[5], the 

sidelobe location at each iteration is found 

numerically instead of calculating it 

algebraically using (8). Thus, the same 

number of highest sidelobes as the number 

of spacings can be located at each iteration 

so that the sidelobes are controlled properly 

to achieve a uniform sidelobe level.

If the number of sidelobes that are 

involved in the perturbation process is more 

than the number of unknown spacings, (7) 

will become an overdetermined system of
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linear eQuations whose optimum solution can 

be obtained by a least square method. If we 

formulate (7) in matrix from as

AAD = AH (9)

where the /th row and zth column 

component of A is

[A^ = 一*时sin(a飼f) 瑚MN, L>N

(10) 

jz>=[j4，曲• • • 庭辭 (11)

WE=[/上*小选•…函W、 (12)

Then the least square solution is expressed 

as

AD= (A TA) - / 丁厶战 (13)

Using (13), we can find △(爲,\<i<^N at 

each iteration.

A thinned array of 31 elements is formed 

in the array length of a 101-element filled 

array in which the number of unknown 

spacings is 14. The modified perturbation 

method (14 sidelobes are involved) and the 

least square method(16 sidelobes are 

involved) are simulated and the resulting 

patterns are shown in Figs. 1 and 2. It is 

observed that the least square method yields 

a better sidelobe performance than the 

modified perturbation method. It is shown 

that the sidelobe performance is degraded 

for some cases of more sidelobes than 16.
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4. Conclusion

A least square approach was proposed for 

synthesis of an optimum beam pattern with 

uniform sidelobes in a thinned antenna 

array. It was shown that the proposed 

method performs better than the 

conventional one.
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Fig 1. Beam pattern of a 31-element thinned array by modified 

perturbation method.
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Fig 2. Beam pattern ofan 31-element symmetric thinned array by 

Least square approach with 16 sidelobes.
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