1999년도 한국음향학회 학술발표대회 논문집 제18권 제2(s)호

# 폴리에틸렌기지 복합재료의 음향감쇠 측정방법 비교

김경섭\*, 정현규\*\*, 이진형\*, 홍순형\*

\*한국과학기술원 재료공학과 \*\*한국원자력연구소

# Comparison of Acoustic Attenuation Measurement Technique of Polyethylene Matrix Composite Materials

Kyongsub Kim\*, Hyun K. Jung\*\*, Zin-Hyoung Lee\* and Soon H. Hong\*

\* Korea Advanced Institute of Science and Technology

\*\* Korea Atomic Energy Research Institute

e-mail: keimi@kaist.ac.kr, hkjung@nanum.kaeri.re.kr, zhlee@kaist.ac.kr, shhong@kaist.ac.kr

### 요 약

감쇠가 큰 고분자 복합재료에서 초음파 다중반사파 를 이용한 Pulse Echo법, 공진주파수에서 내부마찰계수 측정법과 Rheometer를 이용한 동적탄성계수 측정법을 사용하여 음향감쇠계수를 측정하고 각각의 측정자료를 비교하는 연구를 수행하였다. Pulse Echo법을 이용하여 0.5, 1.0, 2.25MHz에서 음향감쇠계수를 측정하였고, 이 때 폴리에틸렌기지 복합재료의 음향감쇠계수는 강화재 의 부피분율에 따라 3-15dB/cm 정도로 큰 값을 나타내 었다. 폴리에틸렌기지 복합재료를 600kHz근처에서 공 진주파수를 가지도록 시편을 만든 후에 내부마찰계수를 측정한 결과로 계산된 음향감쇠계수는 Pulse Echo 실험 에서 구한 값과 잘 일치하는 결과를 얻을 수 있었다. Rheometer를 이용한 동적탄성계수 측정법은 0.1-100Hz 의 주파수에서 측정한 자료를 TTSP 이론을 이용하여 IMHz의 결과와 비교하였는데, 단일 고분자 재료에서는 다른 측정방법과 음향감쇠계수가 일치하였지만 복합재 료에서는 음향감쇠계수값이 일치하지 않는 결과를 나타 내었다.

### 1. 서 론

저잡음특성 수중음향탐지기를 개발하기 위해서는 구 조설계의 개선[1]과 사용되는 재료의 개발이 필요하다. 잡음은 트렌스듀서로 여러 경로를 통해 전달되는데, 이 전달경로를 차단하려면 낮은 음향임피던스와 높은 음향 감쇠특성을 가지는 재료가 필요하다. 재료의 음향 임 피던스가 낮은 재료는 금속소재와의 계면에서 옴파를

대부분 반사시켜서 전달을 막는 역할을 한다. 낮은 음 향임피던스를 만들기 위해서는 밀도가 낮아야 하고, 탄 성계수도 작아야 한다. 일반적으로 고분자 재료가 밀 도와 탄성계수가 낮으므로 이에 적합하다. 또한, 음향 감쇠특성이 높은 경우 재료 내부에서 많은 양의 잡음을 다른 에너지로 전환할 수 있게된다. 높은 음향 감쇠특 성을 얻기 위해서는 원하는 주파수 영역에서 재료가 진 동 에너지를 다른 에너지로 변환시키도록 만들어 주면 된다. 감솨기구로 우선 고려할 수 있는 것은 고분자내 부얘서 진동을 열로 변환시키는 점탄성특성[2]과, 강화 재에 의한 음파의 산란기구[3]를 이용할 수 있다. 복합 재료는 일반적으로 단일재료보다 높은 음향감쇠능력이 크다고 알려져 있지만, 강화재가 음향감쇠농력에 어떠 한 영향을 끼치는지 정량적으로 연구한 결과는 그렇게 많지 않다[4]. 본 연구에서는 강화재의 크기와 부피분 율을 변화시키면서 복합재료에서 강화재가 음향감쇠계 수에 어떠한 영향을 끼치는지 연구하고자 한다.

## 2. 실험 방법

## 2.1 SiC/LDPE 복합재료의 제조

실험액 사용된 복합재료는 8~48µm SiC 강화재와 저 밀도폴리에틸렌 분말을 SPEX mill을 사용하여 혼합한 후, 170℃로 온도를 올려 용용된 폴리얘틸렌 혼합물을 압력을 주어 평판으로 제조하였다. 이때 강화재의 부 피분율 및 크기를 변화시키며, 0~40 vol%의 복합재료 를 제조하였다. 50%이상의 분말강화복합재료는 재조 는 할 수 있었으나 100% 상대밀도의 시편을 얻지 못했 다. 이때 성형압력은 복합재료 내부에 기공이 생기지 않는 압력 이상으로 조절하였다. 공기분위기에서 온도 률 너무 올리면 LDPE의 표면이 산화되므로 제조시에는 용용된 직후 10분이내에 가압을 하여 제조하였다.

## 2.2 음향감쇠 측정

#### 2.2.1 동적탄성계수의 측정

동적탄성계수의 측정에는 Rheometric Scientific사의 ARES 55011을 사용하였다. 측정시편의 크기는 45mmx12.7mm에 2.7mm의 두께를 가지는 평판시편을 이용하였고, 측정방법은 tortional mode를 사용하여 shear modulus(G\*)를 측정하였다. 측정온도는 -30℃, -20℃, -10℃이었으며, 측정주과수는 0.1Hz에서 200Hz까지 측 정을 하였다.

### 2.2.2 Pulse Echo방법의 측정

음향감쇠계수의 측정은 pulse echo방법을 사용하였다. pulse echo방법은 시편의 표면의 상태와는 상관없이 내 부의 음향감쇠계수를 측정할 수 있다는 장점이 있지만, 시편의 음향감쇠계수가 너무 큰 경우 반사파를 관찰하 지 못할 수도 있다는 단점이 있다. 음향감쇠계수 측정 에는 0.5, 1.0, 2.25MHz의 broadband transducer를 사용하 였다. 온도는 18℃의 상온에서 측정을 하였고, 시편은 지름 70mm, 두께 10~20mm의 판형시편을 이용하였다.

#### 2.2.3 Resonance 방법의 측정

음향 특성 측정에는 Quatrosonic사에서 재조된 Ruspec 2000을 사용하였다. 이 장비는 시편에 자율 공진 주파 수를 측정하는 장비이고, 공진 주파수에서 재료의 내부 마찰계수도 측정할 수 있다. 이때 시면에서 발생하는 자율 공진 주파수는 시편의 모양과 크기 및 탄성계수에 따른 것으로 시편마다 다른 주파수에서 공진이 발생한 다. 이 공진 주파수는 Resonance Ultrasound Spectroscopy 라는 방법을 이용하여 탄성계수 값을 계산해 내는데 사 용된다. 공진주파수를 계산하는 방법은 여러 가지 방 법으로 구할 수 있다. 이 공진 주파수에서 공진은 주 파수에 대하여 Lorentzian 형태를 가자게 된다. 이때 공진주파수에서 반가폭을 이용하면 재료의 내부마찰계 수를 구할 수 있다.

재료가 특정한 주파수에서 공진을 일으킬 때, 주파수 에 따른 공진특성으로부터 재료의 내부마찰계수를 구할 수 있다. 측정장비의 관성 모멘트가 아주 크다면 공진 파형은 Lorentzian형태를 띄게 된다. 이 Lorentzian의 커 브의 식은 다음과 같다.

$$y = y_0 + \frac{2 \cdot A}{\pi} \cdot \frac{w}{4(f - f_0)^2 + w^2}$$
[1]

$$Q^{-1} = \frac{(f_2 - f_1)}{f_0}$$
 [2]

여기서 y는 측정되는 진폭의 에너지 혹은 전압이고,

y<sub>0</sub>는 baseline차이 이고, A는 커브 속의 면적, f<sub>0</sub>는 중 심 주파수, w는 커브의 반가폭이다. 여기서 중섬주파 수를 f<sub>0</sub> 라고 하고, w를 반가폭 f<sub>2</sub>-f<sub>1</sub> 라고 할 때, 내부마찰계수(Internal Friction)는 다음과 같이 나타난다. 이때 측정되는 공진과형은 측정장치의 관성모멘트가 무 한대가 아니므로 약간 찌그러진 모양으로 나타난다. 내부마찰계수는 다음 식 [3]을 이용해서 tanδ 와 비교 할 수 있다.

$$Q^{-1} = \delta/\pi \simeq \tan \delta/\pi$$
 [3]

# 2.2.4 Time Temperature Superposition

## Principle

동적탄성계수의 측정결과는 보통 0.1~1kHz 사이의 값에서 측정된다. 하지만 J. D. Ferry에 의해 정리된 TTSP(Time Temperature Superposition Principle)을 이용하 면, 저온의 측정결과를 이용하여 고주파수의 측정값을 예측할 수 있다. TTSP의 식은 아래 식 [4]와 같다.

$$\ln\left(\frac{f}{f_0}\right) = \frac{C_1 \times C_2(T - T_0)}{C_2(C_2 + T - T_g)(T - T_g)}$$
[4]

이 식에 사용된 상수인 C1과 C2는 3개이상의 온도에 서 주파수를 달리하여 동적탄성계수를 축정한 결과로부 터 얻을 수 있다. 이 방법은 일반적으로 amorphous 고 분자에 이용되며 LDPE의 경우는 amorphous 고분자이므 로 이 방법을 사용하여 주파수가 다른 측정값과 비교를 할 수 있다. pulse echo법에 의해 측정된 음향감쇠계수 와 동적탄성계수는 주파수가 크게 차이나므로 측정결과 를 비교하려면 이 방법을 사용하여야만 한다.

## 3. 실험 결과 및 토의

## 3.1 SiC/LDPE의 Resonance 측정결과

복합재료의 감석에 관한 강화재의 효과를 관찰하기 위하여 5~30 vol%의 SiC 분말강화 폴리에틸렌 복합 재료를 제조하여 감쇠특성을 나타내는 재료의 내부마찰 계수를 측정하였다. 이 측정은 공진에 의한 방법을 샤 용하였고, 660kHz에서 공진이 일어나도록 시편을 제조 하여 측정하였다. 공전 주파수는 시편의 크기와 진동 의 전달속도에 관련된 값이므로 진동이 빨리 전달되면 시편이 작아져야 한다. 660kHz에서 측정한 내부마찰계 수의 값은 그림 1 에 나타나있는데, 0.03~0.08 사이의 값을 가졌고, 역시 강화재의 부피분율이 증가함에 따라 내부마찰계수가 증가하는 것을 관찰하였다. 이 실험에 서 재료의 내부마찰계수가 증가할수록 공진 peak과 노 이즈의 구별이 불명확해지는 것을 알 수 있었다. 즉 감쇠가 큰 재료의 경우 공진의 크기가 작아져서 공진이 일어나는 주파수에서도 마치 공진이 일어나지 않는 것 처럼 보이게 되는 것이다. 본 실험에서는 Q<sup>1</sup>가 0.15 이상 되는 경우에는 실제로 측정이 거의 불가능하다는 것을 알 수 있었다.

### 3.2 SiCp/LDPE의 Pulse Echo 측정결과

그림 2 에서 강화재의 부피분율의 변화에 따라 음향 감쇠계수가 변하는 것을 볼 수 있었다. 이때 약 30vol%의 강화재를 첨가한 경우 음향감쇠계수가 가장 커진 것을 알 수 있었는데, 이것은 Nguyen이 epoxy에 rubber filler를 첨가하여 음향감쇠계수를 측정한 결과와 일치하는 것이었다.

그럼 3 에서는 강화재의 부피분율의 변화에 따라 음 속의 변화를 볼 수 있었다. 음속의 경우 처음에는 강 화재가 조금 들어간 경우 느려졌다가 강화재가 더 들어 간 경우 다시 빨라지는 것을 볼 수 있었다. 그리고 음 향감쇠계수가 최대값을 가지는 30vol%의 강화재를 첨 가할 때까지는 LDPE의 음속보다 낮거나 비슷하다가, 음향감쇠계수가 떨어지는 40vol%의 강화재를 첨가하는 경우에는 음속이 증가하기 시작하는 것을 볼 수 있었 다. 이것은 탄성계수에 관한 Reuss model에 의해서 예 측한 결과와 비슷한 경향을 보이다가, 부피분율이 증가 하자 LDPE의 음속과 비슷해지는 값을 가지는 것으로 볼 수 있다.

#### 3.3 SiC/LDPE의 Rheometer 측정결과

LDPE의 동적탄성계수는 -10, -20, -30℃에서 측정되 었다. 이 측정자료는 서로 다른 3가지 온도의 측정자 료로 TTSP를 사용하여 원하는 주파수의 자료로 바꿀 수 있었다. LDPE의 18℃의 주파수로 바꾼 결과는 그 립 4 와 같다. 이 측정자료를 이용하여 동적탄성계수 로부터 LDPE의 phase angle을 측정한 결과는 그립 4 같이 나타났다. 이 측정결과로부터 LDPE의 phase angle은 주파수의 로그함수에 1차함수로 비례하는 것을 알 수 있다. 이때 함수는 아래와 같았다.

$$\tan \delta_G = 0.1394 - 0.0104 \log f$$
 [5]

이 phase angle 측정값으로부터 예측된 음향감쇠계수 는 그림 5 의 B. Hartmann 으로부터 알려진 음향감쇠계 수 값과 잘 일치하였다. 이것으로 보아 LDPE에서 동 적탄성계수를 이용한 음향감쇠계수의 예측이 가능함을 알 수 있었다.[6]

SiCp/LDPE의 동적탄성계수는 -10, -20, -30℃ 에서 LDPE와 같은 방법으로 측정되었다. 이 측정결과는 그 팀 6 에 나타나있다. 여기서 음파의 속도를 예측하는 데 사용되는 동적탄성계수의 실수값인 storage modulus G'은 SiCp/LDPE의 pulse echo방법을 이용한 음파속도 측정결과와 잘 일치함을 알 수 있었다. Pulse echo법을 이용한 음파속도의 측정결과 그림 4 에 나타나 있다. 이 두 결과는 서로 비슷한 경향을 보이고 있음을 알 수 있었다. 지만 동적탄성계수의 허수값인 loss modulus G"은 pulse echo법을 사용하여 측정한 결과에서는 SiC 강화재의 부피분율 증가에 따라 음향감쇠계수도 지속적 으로 증가하였지만, 동적탄성계수측정결과에서 G"은 SiC 강화재를 혼합한 경우, LDPE 자체의 G" 값보다 떨 어지는 것을 알 수 있었다. 이 결과로부터 강화재가 혼합된 고분자 복합재료인 SiCp/LDPE의 경우 저주파수 에서 측정한 동적탄성계수 결과는 TTSP 를 이용하여 고주파수로 변환시킬 수 없음을 알 수 있었다.

#### 4. 결론

음파의 속도 및 감쇠를 측정하는 것은 측정장비와 측정되는 시편의 크기 및 경계조건에 따라서 큰 차이를 보인다. 본 연구에서는 3가지 상이한 방법을 사용하여 음파의 감쇠를 측정 또는 계산하는 방법을 비교하였다. 저주파수에서의 음향감쇠계수를 알려면 음파의 파장이 길기때문에 크기가 큰 시면이 필요하다. 하지만 재료 의 개발에 있어서 크기가 큰 시편을 다량 제조하는 것 은 무리가 있으므로 진동방법인 Rheometer방법과 공진 방법을 사용하면 음파를 직접 이용한 방법을 사용하는 것보다 작은 크기의 시편으로 측정결과를 얻을 수 있다 는 장점이 있다.

본 연구 결과에서 음파를 적접 사용하는 Pulse Echo 을 기준으로 했을 때 LDPE 단일 고분자 재료에서는 음 향감쇠계수가 3방법 모두 비슷한 값을 보였다. 하지만 진동방법을 이용한 것은 TTSP라는 고분자의 이론을 사 용한 것으로 앞으로 여기에 관한 검증이 필요하다. SiC/LDPE 고분자 복합재료에서는 공진방법과 Pulse Echo방법은 비슷한 값을 보였으나, 진동방법은 경향성 이 달랐다. 이것은 복합재료에서는 실제 필요한 주파 수의 음파로 측정을 시행하여야 한다는 것으로 생각된 다.

#### 참고문헌

- 1) P.R.Anderson, US. Patent: 5,243,566
- B.Hartmann, J. Acou. Soc. Am. vol. 95 (1994) pp.226-233
- N.T.Nguyen, M.Lethiecq, B.Karlsson and F.Patat, Ultrasonics vol.34 (1996) pp.669-675
- M.G.Grewe, T.R.Gururaja, T.R.Shrout and R.E. Newnham, IEEE. Tra. Sound. Ultra. vol.37 (1990) pp.506-514
- 5) N.T.Nguyen, M.Lethiecq, B.Karlsson and F.Patat, Ultrasonics vol.34 (1996) pp.669-675
- 6) B.Hartmann, G.F.Lee, J.D.Lee and J.J.Fedderly, J. Acou. Soc. Am. vol.101 (1997) pp.2008-2011



그림 1 SiC/LDPE의 공진법 측정결과



그림 3 SiCp/LDPE의 부피분율에 따른 음파속도



그림 5 LDPE의 음향감쇠계수 (Hartmann)[6]



그럼 2 부피분율에 따른 SiCp/LDPE의 음향감쇠계수



그림 4 LDPE의 Rheometer를 이용한 phase angle



그림 6 SiCp/LDPE의 Rheometer 측정결과