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Abstract

Deep~water sonar transducers of FFR (Free
Flooded Ring) type have been designed using a
coupled FE-BEM. The proposed  sonar
transducers are composed of piezoelectric ceramic
tubes and structural steel materials for simple
fabrication. In order to have an omnidirectional
beam pattern around 30 kHz, a conic steel is
placed below a piezoelectric tube or a steel disc
is placed between two piezoelectric tubes. The
dynamics of the sonar transducer is modelled in
three dimensions and is analyzed with external
electrical excitation conditions. Various results are
available such as directivity pattems and
transmitting voltage responses. The most optimal
structure and dimensions of the steel material
were calculated, so that the beam patterns of the
sonar transducers had +/- 3 dB omnidirectivity at
30 kHz.
1. Introduction

This paper deals with the structural design of
deep-water omnidirectional sonar transducers
operating around 30 kHz. At 30 kHz of the
mid-frequency band in, underwater sonar
applications, the structural design of a sonar
transducer must consider not only the dimensions
of the piezoelectric ceramic but also the
dimensions of any adjacent structural materials in
order to produce omnidirectional directivity
pattems. That is, the acoustic pressure field
formed by the mutual interaction between the
piezoelectric ceramic and the adjacent backing
object produces different directivity patterns as
the shape and the dimensions of the backing
object are changed. Because of this mutual

interaction of the acoustic pressure field the
importance of the optimal design of the backing
object increases. The optimal design of the sonar
transducer is followed by the
acousto-mechano-electrical  simulation of the
dynamic behaviour of the sonar transducer under
the water.

A sonar transducer converts electric currents
applied onto two electrodes of a piezoelectric
material to the mechanical deformation of the
piezoelectric ceramic which is radiated into an
infinite fluid domain in the form of the acoustic
pressure. The sonar transducer can be modelied
by a coupled finite element-boundary element
method (FE-BEM) [1,2]. The structural dynamics
of the composite solid material can be modelled
by the FEM, and coupling with the inviscid and
compressive fluid material can be modelled by the
BEM. The resulting coupled FE-BEM can
simulate the infinite radiation of the acoustic
pressure pgencrated by the piezoelectric solid
material in the fluid media. The infinite element
method (IEM) is also applicable for the infinite
radiation condition of the pressure sound at the
outer boundary of the finite fluid domain [3).
Others use extra damping elements at the outer
boundary of the finite fluid domain for the infinite
radiation condition [4). However these methods
require too many fluid elements as an input
frequency is increased. Also it is always difficult
o generate fluid element meshes susrounding
solid element meshes. The coupled FE-BEM need
Lo generate no fluid elements.

The main aim of this paper is to optimally
design deep-water 30 kHz sonar transducers with
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an omnidirectional beam pattern using the coupled
FE-BEM. Two particular structural cases are
suggested and studied

2. Numerical Method

2.1 Finite Element Method (FEM)
The following equation (1) is the integral
formulation of the piezoelectric equations:
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The isoparametric formulation for 3-dimensional
structural elements is well documented by Allik
H. et. al. (5). Each 3-dimensional finite element is
composed of 20 guadratic nodes and each node
has nodal displacement ( a,,a,,a,) and electric
potential { ¢) variables. In local coordinates the
finite element has 6 surface planes (txy, *yz,
+2zx) which may be exposed to external fluid
environment. The exposed surface is used as a
boundary element which is composed of 8
quadratic nodes.

2.2 Boundary Element Method (BEM)

For sinusoidal steady~state problems, the
Helmholtz equation, V2@+ & ¥ = 0, represents
the fluid mechanics. ¥ is the acoustic pressure
with time variation, ¢, and A(= wfc) is the
wave number. In order to solve the Helmholtz
equation in an infinite fluid media, a solution to
the equation rmust not only satisfy structural

surface boundary condition (BC), £Z = ,, o? a,,

on
but also the radiation condition at infinity,
. 2 8
11’}111 §( + 7 P)dS = (. 3y represents

differentlatnon along the outward normal to the
boundary. p; and a, are the fluid density and
the normal displacement on the structural surface.
The Helmholtz integral equation derived from
Green’s second theorem provides such a solution
for radiating pressure waves;
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p is any point in either the interior or the
exterior and q is the surface point of integration.

B(p) is the exterior solid angle at p. ¥, (p} is
an incident acoustic pressure. The acoustic
pressure for the " global node, ¥(p,). is

expressed in discrete form [6): ( 1 £ 7 < ng )
3G(p ‘3) ¥
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where nt is the total number of surface elements
and a,; are three dimensional displacements.

Equation (3b) is derived from equation (3a) by
discretizing integral surface. And equation (3c¢) is
derived from equation (3b) since an acoustic
pressure on an integral surface is interpolated
from adjacent 8 quadratic nodal acoustic
pressures corresponding the integral surface. Then
equation (3d) is derived from equation (3c) by
swapping integral notations with summing
notations. Finally the parentheses of equation (3d)
is expressed by wupper capital notations for
simplicity. When equation (3e) is globally
assembled, the discrete Helmholtz equation can be
represented as

({AI-AM{?) = +o, ' [Blla)} — {¥.,2
(4) where [A) and {B] are square matrices of (ng
by ng) size. ng is the total number of surface
nodes, When the impedance matrices of equation
(4), [A] and {B), are computed, two types of
singularity arise [7]. One is that the Green's
function of the equation, G{#;,q), becomes
infinite as q approaches to p.. This problem is
solved by mapping such rectangular local
coordinates into triangular local coordinates and
again into polar local coordinates [8]. The other is
that at certain wave number the matrices become
ili-conditioned.  These wave number are
corresponding to eigenvalues of the interior
Dirichlet problem {9]. One approach to overcome
the matrix singularity is that [A]l and [B] of
equation (4) are modified to provide a unique
solution for the entire frequency range [10713].
The modified matrix equation referred to as the
modified Helmholtz gradient formulation (HGF)
(13] is obtained by adding a multiple of an extra
integral equation to equation {4).
([A)-BNDad CH ¥ =+ p, & [ B)Dal D)) ©
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where
3 V=1
- (Number of surface elements)
adracent a surface node

(C] and [D] are rectangular matrices of (nt by
ng) size. nt is the total number of surface
elements. @ symbol indicates that the rows of
[C1ID] corresponding to surface etements adjacent




a surface node are added to the row of [A}[B]
corresponding to the surface node, that is, (6)

£ 846 = £ Eacn+ EEEacomm
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ey ey
where S(G) is the number of surface element
adiacent a surface node. The derivation of the
extra matrices [C)ID] are well described by
Francis D.T.LI13]. Equation (6) may be reduced
in its formulation using superscript @ for
convenience;

A% T = 10, B0} - ¥, D
Equation (7) can be written as
(F) = +0,0XA®) B ) — (4% 08, ©®

2.3 Coupted FE-BE Method

The acoustic fluid loading on the solid-fluid
interface generates interaction forces. These
forces can be related to the surface pressures by
a coupling matrix [L] [6,14);

{(Fy = — [LKP) (9

where (L] = fN'nNdS. N is a matrix of

surface shape functions and n is an outward
normal vector at the surface element. N' is the
transposed form of N matrices. Equations (8) and
(9) indicate that the interaction force can be
expressed by functions of elastic displacement
instead of acoustic pressure. This relationship can
be applied to equation (1) when the sonar
transducer model is submerged into the infinite
fluid media: (10
{FH+ (L) (A%) 93 =1K L0 a +lo, L) (A%) 'B9)

(@ +[K LN’ TMY{a} + jol R a)
{Q =[K,Ma) +[K )8}
where
W?,c Incident Pressure

(L] Coupling Matrix at the Fluid-Structure
Interface

A®  Fuid BEM Matrix [A)

B®  Flid BEM Matrix (B

@ Fluid Density, =/ -1

Since the present sonar transducer is modelied as
a projector, the internal force vector, {F}. and
the external incident pressure, [L] (AQ)) —1;9-626 .
of equation (10} are removed. The only applied
BC for the equation is the applied -electrical
charge vector, {Q}. The acoustic pressure in the

far field is determined by P{p)=l for given values
of surface nodal pressure and surface nodal

displacement:
-(A%) g,

2.4. Modelling of omnidirectional piezoclectric
sonar transducers

Two particular structural designs are considered
for omnidirectional sonar transducers. One is Lhat

-277-

a conic steel is placed below a piezoelectric tube
(Figure 1). And the other is that a steel disc is
placed between two piezoelectric tubes (Figure 2).
A ceramic tube is the most common shape in
deep-water sonar transducer design. Table 1 is
the dimensions of the ceramic tube. The ceramic
tube is polarized in radial axis.

PZI4

@ (b)

.

¥ x

(d)
Figure 1 Three dimensional views of sonar
transducers, {(a) and (¢), and their structural finite
elements, (b) and (d).

Table 1 Dimensions of the ceramic tube

Type [mm}
Inner Radius 3198
Outer Radius 38.20

Height 12.70

Table 2 and Table 3 show property values of the
materials used for the sonar transducer.
Table2.Piezoelectric Matenal Properties of PZT4
{Axially Polarized Properties)

No| Value | Unit [No| Value | Unit|
o | 7500 [Kg/m’|Cy 306E+10 N/mzé
Ci 1.39E+11 :!N/mz €y 52 Nij
Ci| 7786410 | N/’ |ef| 52 N/vm
CH 743E+10 | N/m* |&d] 151 NNmé
Cl130E L N/mf e 127 IN/vm
Cf 743E+10 | N/m’ |ef| 127 |N/vm
Ci| LISE+1l | N/m*|€}| 646E-9 | F/m
Cf 256E+10  N/m? | &3| 646E-9 | F/m |
4 2566410 | N/m [ 2] 562E-9 | F/m
Kol 069 - ke 070 | -



Table 3 Properties of other materials used for
the omnidirectional sonar transducer design

™ | pensiy M“::I:l:ugs | Feisen's
Material [Kg/m’) N/ Ratio ¥
Air 122 1.411E5 -
Water 1000 0.222E10 -
Steel 7850 207.0E9 029

3. Results and Discussions

The coupled FE-BE method has been
programmed with Fortran language running at a
SUN waorkstation. Calculation is done with double
precision and the program is made for three
dimensional structures. It is a common practice to
have the size of the largest element to be less

than A/3.

3.1. One ceramic tube with a conic steel

The dimension of the conic steel was kept
constant while the gap between the ceramic tube
and the conic steel was changed t produce the
best omnidirectional beam pattern. Figure 2
shows the directivity pattern of the sonar
transducer at 30 kHz with Imm gap. The ceramic
tube is coated with non-conductive materials, and
the ceramic and the mounting steel is moulded
with a rubber which has the similar impedance
as the water. The difference between the
maximmum acoustic pressure level and the
minimum acoustic pressure level is defined as a
directivity variation.

Figure 2 The directivity pattern of the sonar
transducer at 30 kHz with 1mm gap.

Figure 3 shows the directivity variation as a
function of the gap. At 9mm gap the sonar
transducer results in the lowest directivity
variation of 49 [dB). Figure 4 shows the
dimensional shape of the optimally designed sonar
transducer. And figure 5 shows the directivity
patien for the optimally designed sonar
transducer at 30 kHz.
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Figure 4 The dimensional shape of the optimally
designed sonar transducer.

Figure 5 The directivity pattem of the sonar
transducer at 30 kHz with 9mm gap.

Figure 6 shows the transmitting voltage
responses (TVR) of the optimatly designed sonar
transducer. The TVR is calculated at 1m from
the source origin. Three' labels in the figure
indicate directions of TVR. The TVR shows +/~
3 dB frequency response between 20 kHz and 33
kHz in the Z axis. The sharp peak resonance in
the figure is probably due to the adjacent elastic
structure and the gap. And figure 7 shows the
(i-B graph of the sonar transducer.

-278-



|OB) rat 1PV 8t 1m

2 25 3 35
Fraquenty {Hz) x 10’

Figure 6 The TVR of the optimally designed
sonar transducer.
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Figure 7 The G-B graph of the sonar transducer.

3.2. Two ceramic tubes and one steel disc
The dimensions of the steel disc were kept
constant while the gap between the ceramic tubes
and the steel disc was changed to produce the
most omnidirectional beam pattern. The two
ceramics are connected in the inner electrodes
and the outer electrodes for electrical drive with
the same phase. Figure 8 shows the directivity
pattern of the sonar transducer at 30 kHz with
Imm gap which produces the lowest directivity
variation, 5.3 [dB). And figure 9 shows the
dimensional shape of the optimally designed sonar
transducer.

Figure 8 The directivity patten of the sonar
transducer at 30 kHz with 1lmm gap.
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Figure 9 The dimensional shape of the optimally
designed sonar transducer.

Figure 10 shows the TVR of the optimally
designed sonar transducer. The TVR shows +/-
3 dB frequency response between 20 kHz and 35
kHz in the Z axis except at a resonance around
28 kHz. And figure 11 shows the G-B graph of
the sonar transducer. It is noticed that the TVR
of the ceramic tube above the conic steel has
higher output acoustic power than that of the
steel disc between two ceramic tubes, It is
because the former transducer (the ceramic tube
above the conic steel) has twice more capacitance
than the latter transducer (the steel disc between
two ceramic tubes),

142 Transmitting vollage response

(4B} ret 11PNV &t Im

Frequerncy {Hz) «10°
Figure 10 The TVR of the optimally designed
sonar transducer.
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4. Conclusion

Deep-water sonar transducers of FFR type
have been designed using a coupied FE-BEM. In
order to have an omnidirectional beam pattermn at
30 kHz, a conic steel is placed bhelow a
piezoelectric tube or a steel disc is placed
between two piezoelectric tubes. The optimal
structure and dimensions of the steel material are
suggested, so that the beam patterns of the sonar
transducers have +/~ 3 dB omnidirectivity at 30
kHz. It is also concluded that the transducer with
conic steel could be better in omnidirectional
directivity than that with steel disc. In addition,
TVR of the proposed transducers is analyzed and
it is found that TVR is optimal in frequency
range of interest.
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