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Abstract

Deep-water sonar transducers of FFR (Free 

Flooded Ring) type have been designed using a 

coupled FE-BEM. The proposed sonar 

transducers are composed of piezoelectric ceramic 

tubes and structural steel materials for simple 

fabrication. In order to have an omnidirectional 

beam pattern around 30 kHz, a conic steel is 

placed below a piezoelectric tube or a steel di으c 

is placed between two piezoelectric tubes. The 

dynamics of the sonar transducer is modelled in 

three dimensions and is analyzed with external 

electrical excitation conditions. Various results are 

available such as directivity patterns and 

transmitting voltage responses. The most optimal 

structure and dimensions of the steel material 

were calculated, so that the beam patterns of the 

sonar transducers had +/~ 3 dB omnidirectivity at 

30 kHz.

1. Introduction

This paper deals with the structural design of 

deep-water omnidirectional sonar transducers 

operating around 30 kHz. At 30 kHz of the 

mid-frequency band in / underwater sonar 

applications, the structural design of a sonar 

transducer must consider not only the dimensions 

of the piezoelectric ceramic but also the 

dimensions of any adjacent structural materials in 

order to produce omnidirectional directivity 

patterns. That is, the acoustic pressure field 

formed by the mutual interaction between the 

piezoelectric ceramic and the adjacent backing 

object produces different directivity patterns as 

the shape and the dimensions of the backing 

object are changed. Because of thi응 mutual 

interaction of the acoustic pressure field the 

importance of the optimal design of the backing 

object increases. The optimal design of the sonar 

transducer is followed by the 

acousto-mechano-electrical simulation of the 

dynamic behaviour of the sonar transducer under 

the water.

A sonar transducer converts electric currents 

applied onto two electrodes of a piezoelectric 

material to the mechanical deformation of the 

piezoelectric ceramic which is radiated into an 

infinite fluid domain in the form of the acoustic 

pressure. The sonar transducer can be modelled 

by a coupled finite element-boundary element 

method (FE-BEM) [1,2]. The structural dynamics 

of the composite solid material can be modelled 

by the FEMt and coupling with the inviscid and 

compressive fluid material can be modelled by the 

BEM. The resulting coupled FE-BEM can 

simulate the infinite radiation of the acoustic 

pressure generated by the piezoelectric solid 

material in the fluid media. The infinite element 

method (IEM) is also applicable for the infinite 

radiation condition of the pressure sound at the 
outer boundary of the finite fhiid domain [3]. 

Others use extra damping elements at the outer 

boundary of the finite fluid domain for the infinite 

radiation condition [4]. However these methods 

ieq나too many fluid elements as an input 

frequency is increased. Also it is always difficult 

to generate fluid element meshes surrounding 

solid element meshes. The coupled FE-BEM need 

to generate no fluid elements.

The main aim of this paper is to optimally 

design deep-water 30 kHz sonar transducers with 
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an omnidirectional beam pattern using the coupled 

FE-BEM. Two particular structural cases are 

suggested and studied

2. Numerical Method

2.1 Finite Element Method (FEM)
The following equation (1) is the integral 

formulation of the piezoelectric equations： 

⑴ + {死=[KM + [K 引{©}

—(w2[Af](a) + (1)

一 {Q = [K^]{a) + [K 神]{曲

The isoparametric formulation for 3-dimensional 

structural elements is well documented by Allik 

H. et. al. [5]. Each 3-dimensional finite element is 

composed of 20 quadratic nodes and each node 

has nodal displacement ( axt ayt ax) and electric 

potential ( ©) variables. In local coordinates the 

finite element has 6 surface planes (土 xy, ±yz, 

± zx) which may be exposed to external fluid 

environment. The exposed surface is used as a 

boundary element which is composed of 8 

quadratic nodes.

2.2 Boundary Element Method (BEM)
For sinusoidal steady-state problems, the 

Helmholtz equation, V2= 0, represents 

the fluid mechanics. 叩 is the acoustic pressure 

with time variation, e"', and k(= a)/c) is the 

wave number. In order to solve the Helmholtz 

equation in an infinite fluid media, a solution to 

the equation must not only satisfy structural 

surface boundary condition (BC), 으g = p/ l， 

but also the radiation condition at infinity, 

占프或(鴛+湘硏於 = 0. -如 represents 

differentiation along the outward normal to the 

boundary, pf and an are the fluid density and 

the normal displacement on the structural surface. 

The Helmholtz integral equation derived from 

Green's second theorem provides such a solution 

for radiating pressure waves；

0( 阳)貝읔終 砂 - G心好籍쓰，

=83 叭。)-乩”&) (2)

e _而
where Gk(p, q) = . r=-\p~q\

p is any point in either the interior or the 

exterior and 이 is the surface point of integration. 

P(p) is the exterior solid angle at p. W/„c(p) is 

an incident acoustic pressure. The acoustic 

pressure for the 产 global node, 叭 is 

expressed in discrete form [6]： ( 1 M)

= 寫人図次쓰¥ - G"흐"g 

kS.
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where nt is the total number of surface

(3b)

(3c)

(3d)

(3e) 

elements

and a Mj are three dimensional displacements. 

Equation (3b) is derived from equation (3a) by 

discretizing integral surface. And equation (3c) is 

derived from equation (3b) since an acoustic 

pressure on an integral surface is interpolated 

from adjacent 8 quadratic nodal acoustic 

pressures corresponding the integral surface. Then 

equation (3d) is derived from equation (3c) by 

swapping integral notations with summing 

notations. Finally the parentheses of equation (3d) 

is expressed by upper capital notations for 

simplicity. When equation (3e) is globally 

assembled, the discrete Helmholtz equation can be 

represented as 

([&一创刀){0} = +Pfa7[B\{a} - {%}

(4) where [A] and [B] are square matrices of (ng 

by ng) size, ng is the total number of surface 

nodes. When the impedance matrices of equation 

(4), [A] and [B]t are computed, two types of 

singularity arise [7], One is that the Green's 

function of the equation, G%(力,,g), becomes

infinite as q approaches to Pi. This problem is 

solved by mapping such rectangular local 

coordinates into triangular local coordinates and 
again into polar local coordinates [8]. The other is 

that at certain wave number the matrices become 

ill-conditioned. These wave number are 

corresponding to eigenvalues of the interior 

Dirichlet problem [9]. One approach to overcome 

the matrix singularity is that [A] and [B] of 

equation (4) are modified to provide a unique 

solution for the entire frequency range [1(广 13]. 

The modified matrix equation referred to as the 

modified Helmholtz gradient formulation (HGF) 

[13] is obtained by adding a multiple of an extra 

integral equation to equation (4).

([X] —C]){罗} = + Q/ a/( [B]㊉a[D])

(5)

where

a =__________________ _____________________
北.(Number of surface elements^ 

\ adjacent a surface node 丿
[C] and [D] are rectangular matrices of (nt by 

ng) size, nt is the total number of surface 
elements. £ symbol indicates that the rows of 

[C],[D] corresponding to surface elements adjacent 
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a surface node are added to the row of [A]([B] 

corresponding to the surface node, that is, (6)

2 &= 2 &43J) + £ £(芸 a
(—I j— 1 1 I (•■ I !"• I m6 1

£ 齢(3= ££(*/(，，」))
»— 1 /= 1 ia I ，"• I »■, 1 /= I 혀T

where S(i) is the number of surface element 

adjacent a surface node. The derivation of the 

extra matrices [C],[D] are well described by 

Francis D.T.I.[13]. Equation (6) may be reduced 

in its formulation using suj汜『script ㊉ for 

convenience；

渺{歹} = +pf <w2B®{a }-嫖 (7)

Equation (7) can be written as

{質} = +pf <w2(A®) "1B®(a ) - (/曇)一7思⑻

2.3 Coupled FE-BE Method
The acoustic fluid loading on the solid-fluid 

interface generates interaction forces. These 

forces can be related to the surface pressures by 
a coupling matrix [L] [6,14]；

{Fi = — [L]{帝} (9)

where [L] = f N*nNdS. N is a matrix of 

surface shape functions and n is an outward 
normal vector at the surface element. N' is the 

transposed form of N matrices. Equations (8) and 

(9) indicate that the interaction force can be 

expressed by functions of elastic displacement 

instead of acoustic pressure. This relationship can 

be applied to equation (1) when the sonar 

transducer model is submerged into the infinite 

fluid media* (10)

{F) + [L)(A&)T 唳=[K„„](a)+[p/<y2[L](/l®) 'B®]

{a} + [ K ,«J{执说 M] {a} + ia>[ R] {a)

(Q) =g,,]{d+[K“膈 
where

Incident Pressure

[L] Coupling Matrix at the Fluid-Structure

Interface
A® Fluid BEM Matrix [A]

B® Fluid BEM Matrix [B]

pf Fluid Density, j =、l 一 ] 
Since the present sonar transducer is modelled as 

a projector, the internal force vector, {F}, and 

the external incident pressure, [L](4$) W，电, 

of equation (10) are removed. The only applied 

BC for the equation is the applied electrical 

charge vector, {Q}. The acoustic pressure in the 

far field is determined by P(p)=l for given values 

of surface nodal pressure and surface nodal 

displacement；

g= 當，-"/ 꺼 ,,m = ] )= I (]])

-(A% 噸

2.4. Modelling of omnidirectional piezoelectric 

sonar transducers
Two particular structural designs are considered 

for omnidirectional sonar transducers. One is that 

a conic steel is placed below a piezoelectric tube 

(Figure 1). And the other is that a steel disc is 

placed between two piezoelectric tubes (Figure 2). 

A ceramic tube is the most common shape in 

deep-water sonar transducer design. Table 1 is 

the dimensions of the ceramic tube. The ceramic

PZT4
tube is polarized in radial axis.

Figure 1 Three dimensional views of sonar 

transducers, (a) and (c), and their structural finite 

elements, (b) and (d).

Table 1 Dimensions of the ceramic tube

Type [mm]

Inner Radius 31.98

Outer Radius 38.20

Height 12.70

Table 2 and Table 3 show property values of the 

materials used for the sonar transducer.

Table2.Piezoelectric Material Properties of PZT4 

(Axially Polarized Properties)

No Value Unit No Value Unit

P 7500 Kg/m° a； 3.06E+10
N/mz i

u 1.39E+11 N/m2 -5.2 N/Vm)

7.78E+10 N/mz 药, -5.2 N/Vm

G 7.43E+10 :N/mz 政 15.1 N/Vmj

1.39E+11 N/m2 成 12.7 N/Vm

c* 7.43E+10 1 N/mz 政‘ 12.7 NA/끼
e L15E+11 N/mz £ 6.46E-9 「空J

C： 2.56E+10 N/m2 葛 6.46E-9 F/m

C： 2.56E+10 ；N/mz £ 5.62E-9 F/m

IS 0.69 - K15 0.70 -
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Table 3 Properties of other materials used for 

the omnidirectional sonar transducer design

Material、\

Density p 

[Kg/m3]

Young's 

Modulus Y 

[N/m2]

Poison's

Ratio /

Air 1.22 1.411E5 -

Water 1000 0.222E10 -

Steel 7850 207.0E9 029

a'흐

匸오

碧$

本
点>한5

85

3. Results and Discussions

The coupled FE-BE method has been 

programmed with Fortran language running at a 

SUN workstation. Calculation is done with double 

precision and the program is made for three 

dimensional structures. It is a common practice to 

have the size of the largest element to be less 

than 치3.

3.1. One ceramic tube with a conic steel
The dimension of the conic steel was kept 

constant while the gap between the ceramic tube 

and the conic steel was changed to produce the 

best omnidirectional beam pattern. Figure 2 

shows the directivity pattern of the sonar 

transducer at 30 kHz with 1mm gap. The ceramic 

tube is coated with non-conductive materials, and 

the ceramic and the mounting steel is moulded 

with a rubber which has the similar impedance 

as the water. The difference between the 

maximum acoustic pressure level and the 

minimum acoustic pressure level is defined as a 

directivity variation.

Figure 2 The directivity pattern of the sonar 

transducer at 30 kHz with 1mm gap.

Figure 3 shows the directivity variation as 거 
function of the gap. At 9mm gap the sonar 

transducer results in the lowest directivity 

variation of 4.9 [dB]. Figure 4 show 응 the 

dimensional shape of the optimally designed sonar 

transducer. And figure 5 shows the directivity 

pattern for the optimally designed sonar 

transducer at 30 kHz.

01 23456789 10
Gap[mm]

Figure 3 The directivity variation as a function of 

the gap

Figure 4 The dimensional shape of the optimally 

designed sonar transducer.

Figure 5 The directivity pattern of the sonar 

transducer at 30 kHz with 9mm gap.

Figure 6 shows the transmitting voltage 

responses (TVR) of the optimally designed sonar 

transducer. The TVR is calculated at Im from 
the source origin. Three' labels in the figure 

indicate directions of TVR. The TVR 아lows +/- 

3 dB frequency response belw은en 20 kHz and 33 

kHz in the Z axis. The sharp peak resonance in 

the figure is probably due to the adjacent elastic 

structure and the gap. And fig니re 7 shows the 

G-B graph of the sonar transducer.
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Figure 6 The TVR of the optimally designed 

sonar transducer.

Figure 9 The dimensional shat圮 of the optimally 

designed sonar transducer.

G-B graph
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Figure 7 The G~B graph of the sonar transducer.

3.2. Two ceramic tubes and one steel disc
The dimensions of the steel disc were kept 

constant while the gap between the ceramic tubes 

and the steel disc was changed to produce the 

most omnidirectional beam pattern. The two 

ceramics are connected in the inner electrodes 

and the outer electrodes for electrical drive with 

the same phase. Figure 8 shows the directivity 

pattern of the sonar transducer at 30 kHz with 

1mm gap which produces the lowest directivity 

variation, 5.3 [dB]. And figure 9 shows the 

dimensional sha가e of the optimally designed sonar 

transducer.

Figure 8 The directivity pattern of the sonar 

transducer at 30 kHz with 1mm gap.

Figure 10 shows the TVR of the optimally 

designed sonar transducer. The TVR shows +/- 

3 dB frequency response between 20 kHz and 35 

kHz in the Z axis except at a resonance around 

28 kHz. And figure 11 shows the G-B graph of 

the sonar transducer. It is noticed that the TVR 

of the ceramic tube above the conic steel has 

higher output acoustic power than that of the 

steel disc between two ceramic tubes. It is 

because the former transducer (the ceramic tube 

above the conic steel) has twice more capacitance 

than the latter transducer (the steel disc between 

two ceramic tubes).
Transmitting voltage response
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Figure 10 The TVR of the optimally designed 

sonar transducer.
x 10s G-B graph

Q.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Ccmductance G x 10s

Figure 11 The G-B graph of the sonar 

transducer.
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4. Conclusion

Deep-water sonar transducers of FFR type 

have been designed using a coupled FE-BEM. In 

order to have an omnidirectional beam pattern at 

30 kHz, a conic steel is placed below a 

piezoelectric tube or a steel disc is placed 

between two piezoelectric tubes. The optimal 

structure and dimensions of the steel material are 

suggested, so that the beam patterns of the sonar 

transducers have +/— 3 dB omnidirectivity at 30 

kHz. It is also concluded that the transducer with 

conic steel could be better in omnidirectional 

directivity than that with steel disc. In addition, 

TVR of the proposed transducers is analyzed and 

it is found that TVR is optimal in frequency 

range of interest.
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