Conformal 어레이를 이용한 FFTSA 기법 성능 분석

최주평, 이원철 숭실대학교 대학원 정보통신전자공학부 통신신호처리연구실

Performance Analysis of FFTSA Method using Conformal Array

Pyoung-Joo Choi, Won-Cheol Lee School of electronic engineering, soongsil university

※본 연구는 수중 음향 특화 센터에서 지원한 Synthetic Aperture Array 소나 신호처리 기술연구의 일환으로 수행된 것입니다.

요약

본 논문에서는 기존의 선형 견인 어레이 방법인 FFTSA기법에서의 여러 가지 환경적 요인에 대한 입사 각 추정 성능의 변화에 대해서 고찰하여 보았다. 즉, 시 간 및 공간적 코히어런스 주기 변화에 대한 추정 성능 변화와 견인 센서 어레이가 가져야 하는 직선 경로에서 주위의 환경적 요인으로 인해 직선 방향을 중심으로 이 탈된 발진 경로, 또는 진동경로가 발생되는 시스템 에러 주기 변화에 대한 추정 성능의 변화에 대해 컴퓨터 시뮬 레이션을 통하여 입사각 추정 성능의 변화를 살펴보았 다. 또한 비선형 특성을 지니는 견인 배열 센서 어례이 인 Conformal array를 FFTSA기법에 적용했을 경우 환경적 요인에 의한 입사각 추정 성능의 변화를 컴퓨터 시뮬레이션을 통하여 기존의 FFTSA기법과 비교하여 보았다.

1. 서론

이 논문에서 사용되어지는 합성 센서 배열 방법은 FFT변환율 통한 빔 영역에서의 연속적인 시간 간격에 서의 부배열 신호를 코히어런트한 과정을 통하여 수행되 어지며 FFT 합성 배열기법(FFTSA)이라 불리어 진 다.[1],[2]-[5]. FFT 합성 배열 기법은 견인함에 의해 견인되는 선형 배열 센서 시스템에 대한 신호 이득의 증 가 및 입사각 분석 능력의 개선에 목적을 두고 있다. 이 를 위해 센서 배열을 빌영역에서 합성을 수행하며, 연속 적인 부배열 빔 패턴에서 코히어런트한 조합을 수행한 다. 그리고 연속적인 추정의 이용에 의해 선형 배열의 물리적 길이를 확장한다. 이동 부어레이를 사용함으로 해서 수신과정을 반복해서 얻은 응답 결과를 전체적으로 조합함으로 물리적으로 긴 어레이를 쓰는 효과를 얻을 수 있다. 이로 인해 신호 취득과 더불어 계산되는 어례 이 응답들의 적절한 위상보상과정을 통한 고해상도의 합 성 빔 패턴을 얻을 수 있다. 또한 수신된 신호가 추정된 간격 하에서 코히어런트하며 센서 부배열이 직선 방향으 로 견인되어 진다고 가정한다. Stergiopoulos와 Sullivan은 위상 보정값을 실측 자료로부터 직접 구함으 로써 음원의 중심 주파수를 미리 알 필요가 없고, 센서 의 위상 및 이득 오차에 강한 ETAM 방법을 제안하였 다. 특정시간간격을 두고 취득한 부어레이 출력들을 상 호상관기를 사용하여 연속하여 취득한 부어레이 입사신 호들간의 위상차를 추출하고 이를 미지의 센서출력합성 에 이용하므로써 인위적인 어레이 aperture 확장을 수 행하게 된다. 이때 확장될 수 있는 센서출력들의 수는 이러한 반복적인 과정에 소요되는 처리시간내에 목표물 에서 부터 발생되는 신호 및 주변환경의 coherency가 어느정도 유지되는가에 따라 결정될 수 있다. 이러한 기 존의 FFTSA기법과 ETAM기법에서는 선형 센서 배열 어레이를 수중 환경하에서 견인함에 있어 주위의 여러 가지 환경적 요인으로 인해 많은 영향을 받는다. 즉, 수 중이라는 특성으로 인해 각 센서의 위치변화라든지 긴 어레이 길이에 대한 구조적 문제 등이 발생한다.[1],[6] 특히, 견인 시에 발생되는 배열 센서의 위치 오류는 입 사각 등 주요 파라미터 추정 시 심각한 성능저하를 나타 낸다. 이와 같은 문제점을 해결하기 위해 견인함 측면에 비선형의 센서 배열 어레이를 설치하는 방법인 Conformai array기법을 고안하였다.

2. FFTSA기법에서의 센서 출력 신호애 대한 모델링

어레이는 N개의 등간격으로 구성된 하이드로폰을 지니 고 있으며 이 등간격을 δ라 한다. 소스로부터의 신호는 θ 의 각으로 하이드로폰에 입사되며, 각 θ 는 수평 선형 어레이의 전부분에 걸쳐서 측정되어진다. 센서에 입사되 는 신호는 각 센서 출력을 표본화 하는 시점인 t_i=i△t에 서 표본화 되어지며 여기서 △t는 표본화 간격이고 K는 각각의 센서 출력에 대한 총 데이터 표본수 이다. 단일 방사 물체에 의해 생성된 협대역 신호가 입사되는 경우 견인함이 이동한다고 가정하면 어레이 이동과 소스 방사 신호의 조합에 기인하여 도플러 주파수가 발생한다. 식 (1)은 이와 같은 과정을 거친 센서에 대한 출력 신호를 나타내고 있다.[1].

$$x_{n}(t_{i}) \cong A \exp\left[j2\pi f_{0}\left(t_{i} - \frac{vt_{i} + \delta(n-1)}{c}\sin\theta\right)\right] + \varepsilon_{n}(t_{i})$$
(1)

 τ 초 후 어레이는 v τ 만큼 이동되어지며, 파라미터 v

 와 τ 의 적합한 선택에 의해 v τ =q δ 의 관계를 얻을 수

 있다. 여기서 q는 어레이 이동시 발생되는 하이드로폰

 위치의 수를 나타낸다. τ 만큼 지연된 후의 센서에 수신

 된 신호 χ n(ti+ τ)는 식(2)와 같이 표현될 수 있다.

$$x_{o}(t, +\tau) = \exp(j2\pi g_{o}\tau)Aexp\left[j2\pi g_{o}\left(t, -\frac{\nu t_{i}+\delta(q+n-1)}{c}sin\theta\right)\right] + \varepsilon_{o}(t_{i}+\tau)$$
(2)

효과적인 합성 견인 센서 배열 어레이의 성능을 증가시 키기 위해 코히어런트하게 합하면 다음과 같다.[1]

$$B(f_o, \theta_s) = b(f_o, \theta_s) \sum_{m=0}^{M} \exp\left\{\left[i2\pi f_o\left(1 - \frac{v}{c}\sin\theta\right)mt\right] - j\phi_m\right\}$$
(3)

생성하는데 필요로 되어지는 m번째 빔 패턴 출력에 대 한 위상 보상 요소이다. 그리고 M은 모든 r 초 마다 생 성되어지는 물리적 어례이의 연속적인 빔 패턴 출력의 수이다. 위상 수정요소 Øm의 추정은 관련된 소스 신호 수신기 및 ν 또는 속도 필터 개념에 대한 사전 지식이 요구된다. 그러므로 위의 합성 어폐처 프로세싱 기법을 향상 시키기 위해 새로운 접근방식이 요구된다. 물리적 인 N개의 하이드로폰 어레이로부터 M번의 연속적인 축 정들은 다음과 같이 퓨리에 변환되어진다.

$$B(f_s,\theta_s) = \sum_{m=1}^{M} b(f_s,\theta_s)_{m\tau} \exp[-j2\pi f_s m\tau]$$
(4)

fs=fos(1±νs·sinθs/c)이며, (θ, fo,ν)는 실제 파라 미터, (θs, fos, νs)는 변수 또는 조절값들 이다. 퓨리에 변환은 시간 의존 빔 패턴에 대해 주파수 스팩트럼을 재 공하며, 기본적으로 선형 어레이의 공간 빔 패턴 정보의 시간 의존 특성을 지니는 시간-주파수 FFT(fast fourier transform)이다. 위의 관계는 다음과 같이 변형 되어질 수 있다.

$$B(f_0, \theta_s)_{M_t} = B(f_0, \theta_s)_{t_0} \sum_{m=1}^{M} \exp\left[j2\pi f_0\left(1 - \frac{v}{c}\sin\theta\right)n\tau\right] \exp\left[j2\pi f_sm\tau\right]\right\}$$
(5)

식(5)의 빔 전력 패턴에 대한 센서 출력은 P(f_s, θ_s)_H = B(f_s, θ_s)_H · B(f_s, θ_s)⁺_H 이고, 여 기서 +는 켤레 복소수를 의미한다.

3. 환경적 요인을 고려한 FFTSA 센서 출력 신호 모델링

3.1 신호의 시간 및 공간적 코히어런스에 의한 FFTSA 센서 출력 신호 모델링

입사되는 신호사이의 공간적 코히어런스와 템포럴 코 히어런스는 다음과 같이 표현되어질 수 있다.

$$\rho_{ni}[(m-q)\tau] = \frac{E[X_n(f,m\tau)X_i^+(f,q\tau)]}{\sqrt{E[X_n^2(f,m\tau)]E[X_i^2(f,q\tau)]}}$$
(6)

식(6)은 m번째 획득 동안 n번째 하이드로폰 및 q번째 획득 동안 |번째 하이드로폰에서의 공간 및 템포럴 코히 어런스를 나타내고 있다. 또한, 신호의 템포럴 코히어런 스가 아래의 가우시안 모델을 따른다고 가정한다.

$$\rho(f_o, m\tau) = \exp\left\{-\left[m\tau/\mathcal{T}_c\right]^2/2\right\}$$
(7)

여기서 T_c는 신호의 템포럴 코히어런스 주기이다. 수신 된 신호의 템포럴 코히어런스 손실이 합성 어폐처의 공 간적 코히어런스 길이의 손실을 유발하는 관계로 가우시 안 모텔에 대해 식(7)은 다음과 같이 수정되어질 수 있 다.

$$\rho_{nl}(f, m\tau) = \exp\left\{-\left[\frac{mv\tau + (n-l)\delta}{vT_c}\right]^2/2\right\}$$
(8)

여기서 적분 주기 mr는 견인 어레이의 n번째와 첫 번째 하이드로폰 사이의 진행거리인 mvr+(n-1) 로 해석되어질 수 있다. 위 모델은 신호의 템포럴 코히 어런스 길이 v·Tc가 매체의 공간적 코히어런스 길이 Lo보다 작다는 가정아럐 가능하다. 앞선 FFTSA기법에 서의 전력 빔 패턴 출력을 참조하여 각 센서에서의 전력 빔 패턴 출력은 다음과 같이 수정되어질 수 있다.

$$P(f_{\alpha},\theta_{\alpha})_{M_{c}} = \sum_{n=1}^{M} \sum_{q=1}^{M} \left\{ \sum_{n=q}^{N} \sum_{n=q}^{N} X_{n}(f_{\alpha})_{m_{c}} X_{1}^{*}(f_{\alpha})_{qr} \cdot \exp\left[f2\pi f_{\alpha} \frac{\delta(n-f)\sin\theta_{s}}{c} \right] \right\}$$
$$\cdot \exp\left[- j2\pi f_{\alpha} \frac{(m-q)v\tau\sin\theta_{s}}{c} \right]$$
(9)

또한 신호의 템포럴 코히어런스를 고려했을 경우 식(8) 을 이용하여 다음과 같은 결과를 얻을 수 있다.

$$X_{a}(f_{v})_{m}X_{t}(f_{v})_{m} = X_{v}^{2}(f_{v})\exp\left\{-\left[\frac{(m-q)v\tau + (n-t)\delta}{vT_{v}}\right]^{2}/2\right\}$$
(10)

그러므로 식(9)의 전력 빔 패턴은 다음과 같이 수정되 어질 수 있다.

$$P(f_{\alpha},\theta_{1})_{\lambda h} = \sum_{n=1}^{M} \sum_{q=1}^{M} \left\{ \sum_{n=1}^{N} \sum_{l=1}^{N} \left\{ X_{\alpha}^{2}(f_{\alpha}) \cdot \exp\left\{ -\left[\frac{(m-q)v\tau + (n-l)\sigma}{vT_{c}^{2}}\right]^{2} I_{c}^{2} \right\} \right\} - \exp\left\{ J 2 \sigma_{\alpha}^{2} \frac{\delta(n-l)\sin\theta_{c}}{c} \right\} \right\}$$
$$- \exp\left\{ -J 2 \sigma_{\alpha}^{2} \frac{(m-q)v\tau \sin\theta_{c}}{c} \right\}$$
(11)

3.2 센서배열 견인 속도 변화에 따른 성능 변화

전인 센서 어레이가 가져야 하는 직선 경로에서 주위의 환경적 요인으로 인해 직선 방향을 중심으로 발진 경로, 또는 진동경로가 발생되는 시스템 에러를 가질 수 있는 데, 이러한 시스템 예러에 대해 다음과 같이 적용되는 새로운 식을 얻을 수 있다.[1].

$$v(m\tau) = \sqrt{v_o^2 - v_+ (m\tau)^2}$$
$$v_+ (m\tau) = v_o \sin \gamma \cos(2\pi m\tau/T_o)$$
(12)

여기서 ν(m r)는 직선 방향의 견인 센서 배열 경로를 가정했을 때의 견인 속도 요소이며, ν₊(m r)는 속도ν (m r)에 직각을 이루는 속도 성분이다. γ는 직선 경로 부터의 편이각 또는 이탈각을 나타내며, T₀는 진동 경로 에 대한 주기이다. 식(5)에 위의 식(12)에 표현되어 있는 속도 성분을 대입해 주면 다음과 같이 변형된 빔 패턴 출력을 얻을 수 있다.

$$B(f,\theta_s)_{Mr} = b(f,\theta_s)_{t_s} \sum_{m=1}^{M} \exp\left[j2\pi f_o\left(1 - \frac{v(m\tau)}{c}\sin\theta\right)m\tau\right] + \exp\left[-j2\pi f_om\tau\right]$$
(13)

4. Conformal 어례이 구조를 이용한 FFTSA기법 센서 출력 신호 모델링

견인 센서배열 어레이가 비선형이라고 가정했을 경우 각 센서에 입사되는 신호 x(t)는 다음과 같다.

$$x_n(t_i) = Aext\left[2\pi f\left(t_i - \frac{D_{n-1} \cdot \sin(\theta - \phi_{1n})}{c}\right)\right] \quad (14)$$

여기서 D_{n-1}은 비선형 견인 센서 어례이 상에서 기준 센서로부터 n번째 센서까지의 거리를 의미하며 Ø₁n은 가상의 비균일 선형 어례이 선상에서 n번째 센서까지의 직선 거리에 대한 사이각을 의미한다. 여기서 센서 개수 를 나타내는 n=1,2,3,…,N 이고, A는 신호의 감쇄와 위 상지연을 포함하는 복소값이며, f는 도플러 주파수, c는 수중환경 하에서의 음파 전달 속도이다. 이때 c의 값은 1498m/s 이다. 센서 사이의 위치의 불균형으로 인해 발 생되는 비선형 견인 센서 배열 어례이에서의 입사신호에 대한 지연거리 X와 지연시간 Y는 다음과 같다.

$$X = D_{n-1} Sin(\theta - \phi_{-1n})$$
$$Y = \frac{D_{n-1} Sin(\theta - \phi_{-1n})}{c}$$
(15)

비선형 견인 센서 배열 방식인 Conformal 어레이를 FFTSA 기법에 적용했을 경우 앞에서 언급한 FFTSA 에서의 센서에 대한 출력 신호 모델링 과정을 거쳐 최종 빔 전력 패턴 출력을 얻을 수 있다. 단, 각 센서에 대한 거리 표현에 있어서 기존의 FFTSA와는 다르게 기준 센서에서 n번째 센서까지의 거리가 식(16)과 같이 표현 될 수 있다.

$$D_{n-1} = \frac{(\varDelta d_1 + \varDelta d_2 + \varDelta d_3 + \cdots \varDelta d_n)}{\cos \phi_n} \quad (16)$$

여기서 ($\Delta d_1 + \Delta d_2 + \Delta d_3 + \cdots \Delta d_n$)은 가상의 선 형 견인 센서 어레이의 기준 센서에서 n번째 센서까지 의 거리를 의미한다. 식(15) 및 식(16)의 관계는 그림1 을 통해 파악할 수 있다. 또한 앞에서 언급한 신호 모델 링 과정을 거치면 각 센서에 대한 출력들로 구성된 백터 를 행렬식으로 표현하면 다음과 같다.

여기서

$$x(t_{i}+\tau) = [x_{1}(t_{i}+\tau) \ x_{2}(t_{i}+\tau) \ x_{n}(t_{i}+\tau)]^{T}$$

 $x(t_i + \tau) = \Phi(t_i)S(t_i) + E$

 $\Phi(t_i) = diag\left[e^{Et/\epsilon} \frac{D_{i}\sin(\theta - t_0)}{c} e^{Et/\epsilon} \frac{D_{i}\sin(\theta - t_0)}{c} \cdots e^{Et/\epsilon} \frac{D_{i-1}\sin(\theta - t_0)}{c}\right]$

$$E = [\varepsilon_1(t_i + t) \ \varepsilon_2(t_i + t) \ \cdots \ \varepsilon_n(t_i + t)]^T$$
(18)

$$S_n(t_i) = A \cdot e\left(2\pi f_o\left(\tau - \frac{v\tau}{c}\right)\right)$$

$$e(2\pi (f_o - f_d)t_i)$$
(19)

$$f_d = f_o \cdot \frac{v}{c} \sin \theta \tag{20}$$

(17)

식(19)에서 fa는 도플러 천이값을 의미하며, A는 신호 의 감쇄와 위상 지연을 나타내는 복소값이다.

5. 모의 실험

FFTSA기법에서의 템포를 코히어컨스 효과에 대한 모 의 실험 결과를 그림2에 보였다. T_c는 각각 2, 3, 4, 6.7 이며, 시뮬레이션에 대한 환경조건으로 하이드로폰의 개 수룔 64개로 했으며, 연속적인 빔패턴 출력의 합성횢수 를 20번, 추정하려는 목표물에 대한 고유 주파수를 330Hz로 지정하였다. 또한 센서에 입사되는 신호의 입 사각을 1개의 신호가 입사된다고 가정하였을 경우에서 20°로 지정하였다.

그림2에서 Frequency(%)는 빔패턴 출력에서 각각의 dB값에 대한 샘플의 발생 확률을 나타내고 있으며, M·tau는 견인 센서 배열 어레이의 총적분 시간을 나 타낸다. 또한 Tc는 신호의 템포럴 코히어런스에 대한 주기를 의미한다. 모의 실험 결과에서 알 수 있듯이 FFTSA에 의해 구해진 합성된 빔패턴상에 사이드로브 값들이 증가함을 볼 수 있으며, 입사각 추정 성능이 저 하되고 있음을 알 수 있다. 다시 말해서 템포털 코히어 런스 주기 Tc가 짧아지면 사이드로브 평균 레벨이 증가 하여 성능이 저하되고 있음을 알 수 있다. 그림3과 그림 4는 FFTSA기법에서 시스템 에러에 대한 발진주기의 번화에 따른 성능 변화를 나타내고 있다. 템포럴 코히어 런스 주기는 공통적으로 T_c=M r /2로 고정하였으며, 편 니각은 각각 $\gamma = 2^{\circ}$ 및 $\gamma = 8^{\circ}$ 로 하였다. T_o는 각각 0.5, 1, 2, 3 으로 지정하였으며, SNR 및 사이드로브 평균 레벨 의 수치를 나타내고 있다. 여기서 T_o는 진동 주기를 의 미하며 견인 센서 배열에 대한 진동 주기가 짧아질수록 사이드로브 평균 레벨이 증가하여 성능이 저하되고 있음 을 알 수 있다. 또한 편이각 $\gamma = 8^{\circ}$ 일 때는 $\gamma = 2^{\circ}$ 일 때 와 비교하여 크나큰 차이는 없으나 빔 전력 패턴 출력에 서의 사이드로브 평균 레벨이 약간 증가함을 알 수 있 다.

Conformal array를 FFTSA기법에 적용했을 경우의 컴퓨터 시물레이션 결과를 그림5에 보이고 있다. 센서의 개수 N을 30개로 하였으며 각센서의 간격을 $\lambda/2$ 로 정 규화 하였을때, 견인 센서 어례이에 대한 연속적인 빔꽤 턴 출력의 합성횟수 M을 10번, 20번, 25번 및 40번으로 지정하였다. 또한 목표물로부터의 센서에 대한 소스 신 호의 입사각은 20°와 25°로 하였다. 모의 실험 결과에서 도 알 수 있듯이 빔패턴 출력의 합성횟수 M이 증가할수 록 기존의 FFTSA기법과 유사하게 목표물의 입사 신호 에 대한 견인 센서 배열 어레이의 추정 성능이 향상되고 있음을 확인 할 수 있다.

비선형 견인 센서 배열 어레이에서 탬포를 코히어런스 효과에 대한 모의 실험 결과를 그림6에 보였다. 환경 조 건은 그림5와 동일하며 Tc를 2, 3, 4, 6.7 로 지정하였고 SNR 및 사이드로브 평균 레벨의 수치를 나타내고 있다. 선형어례이를 사용했을 경우와는 달리 템포럴 코히어런 스 주기 T_c의 변화에 따라 사이드로브의 평균레벨이 크 나큰 변화가 없음을 파악할 수 있다. 즉, 비선형 견인 센 서 배열 어레이를 이용했을 때 기존의 FFTSA 기법에 비해 환경 변화에 더욱 강인함을 파악할 수 있다. 그림? 과 그림8은 Conformal 어레이를 적용한 FFTSA기법 에서 시스템 에러에 대한 발진주기의 변화에 따른 성능 변화를 나타내고 있다. 이 시뮬레이션에 대한 환경조건 또한 템포럴 코히어런스 경우와 같으며, 템포럴 코히어 러스 주기는 공통적으로 Tc=M r /2로 고정하였으며, 편 이각은 각각γ=2°및γ=8°로 하였다.T。는 비선형 견인 센서 배열 어레이의 직선 경로로부터 벗어난 진동 주기 를 의미하며, 각각 0.5, 1, 2, 3 로 지정하였다. 또한 각 수치에 대한 SNR 및 사이드로브 평균 레벨의 수치를 나타내고 있다. 진동 주기가 짧아져도 사이드로브 평균

레벨이 증가 정도가 기존의 FFTSA기법에 비해 비선형 견인 센서 배열 어레이를 적용했을 경우 성능이 저하 정 도가 약함을 알 수 있다. 모의 실험 결과에서 보면 편이 각 γ가 커질수록 1개의 입사 신호 추정에 있어서 γ =2°일 때와 비교하여 크나큰 차이는 없으나 빔 전력 패 턴 출력에서의 사이드로브 평균 레벨이 약간 중가함을 알 수 있다. γ=2°인 경우에 비해서는 사이드로브의 평 균레벨이 약간의 증가가 있음을 파악할 수 있다.

6. 결론

본 논문에서는 신호의 템포털 코히어런스 주기의 변화 에 따른 FFTSA의 변화 발생 추이 및 신호의 발진 또 는 진동 주기에 따른 추정성능의 변화 발생 추이 고찰하 였으며, Conformal 어레이를 이용한 FFTSA 추정 기 법에서는 수중환경으로 인한 공간 및 템포털 코히어런스 영향 및 센서 위치 변화와 같은 환경적 요인에 의한 영 향이 기존의 순수 FFTSA기법을 이용했을 때보다 더욱 강인한 특성을 지님을 파악할 수 있었다. 이 기법은 기 존의 기법과 달리 선형 센서 위치 지정에 대한 문제점을 극복할 수 있으며, 견인함에 센서 배열 설치시 구조적 제한을 극복할 수 있다. 단, 탐지하려는 신호의 SNR이 낮을 경우 추정의 효율성이 낮아 지는 단점이 발생한다.

참고문헌

- Stergios Stergiopoulos and Heinz Urban, A new passive synthetic aperture technique for towed arrays, IEEE J. of Oceanic Eng., vol. 17 no. 1, pp. 16~20, Jan. 1992.
- [2] N. C Yen and Carey, Application of syntheticaperture processing towed-arraydata, J. Acoust. Soc. Am., vol. 86, pp. 754~765, 1989.
- [3] S. W. Autrey, Passive synthetic array, J. Acoust. Soc. Am., vol. 84, pp.593~598, 1988.
- [4] S. Stergiopoulos and E. J Sullivan, Extended towed array processing by an overlap correlator, J. Acoust. Soc. Am., vol. 86, pp. 15 8~171, 1989.
- [5] S. Stergiopoulos, Optimum bearing resolution for a moving towed array and extension of its physical aperture, J. Acoust. Soc.Am., vol. 87, pp. 2128~2140, 1990.
- [6] G. S. Edlson and E. J. Sullivan, Performance bounds for the overlap-correlator synthetic aperture processor, J. Acoust. Soc. Am., vol. 88,

suppl. 1, 2UW19,1990

그림1. 비선형 견인 셴서배열 어레이에서의 입사신호에 대한 지연거리 및 지연시간 표현

Level of side lobe 그림2. 코히어린스 주기에 따른 성능변화

변화(γ=2°)

그림 8.시스템 에러에 대한 성능 변화(γ=8°)