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Characteristic Flux-Difference Improvement for Inviscid and Viscous
Hypersonic Blunt Body Flows

Abstract

The Characteristic Flux Difference Splitting (CFDS) scheme designed
to adapt the characteristic boundary conditions at the wall and
inflow/outflow boundary planes satisfies Roe's property U, although the
CFDS Jacobian matrix is decomposed by a product of elaborate
transformation matrices and explicit eigenvalue matrix. When the CFDS
algorithm, thus a variant of Roe’'s scheme, is applied straightforwardly to
hypersonic flows over a blunt body, the strong bow shock gradually breaks
down near the stagnation point. This numerical instability is widely
observed by many researchers employing flux-difference method, known in
the literature as the carbuncle phenomenon. Many remedies have been
proposed and resulted in partial cures. When the idea of Sanders et al
which identifies the minimum eigenvalues near the discontinuity present is
applied to CFDS method, it is shown that the instability problem can be
controlled successfully. A few flux splitting methods have also been tested
and results are compared against the Nakamori’s Mach 8 blunt body flow.

1. Introduction
Pioneering works on CFD developments, especially at NASA-Ames

15 elevated potential and

along the line of flux-vector splitting methods
usefulness of CFD codes both as a design tool for future airplanes and as
detailed flow simulations for phenomenological study. Lombard et al®®
have also contributed their share in computing the Navier-Stokes
equations through elaborate approaches which enable one to switch among
the primitive, conservative and characteristic variable vectors easily and to
apply the characteristic boundary conditions naturally. However, after much
application of these schemes to complex flows with varying speeds and
complexity, their weakness began to surface. For example, failure in

capturing contact discontinuity, shock wave, and expansion wave with high
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resolution and robustness is sometimes reported in resolving compressible
flows. This is important especially for hypersonic flow computations
where these waves become predominant. van Leer’'s flux-vector splitting
(FVS) scheme!® has shown the robustness for the strong normal shock and
expansion waves. However, this scheme remained excessively dissipative
for the contact discontinuity and the viscous regions. Nevertheess, the
FVS scheme is quite effective for the computation of inviscid hypersonic
flow because of its robustness for shock waves.

On the other hand, the flux difference splitting (FDS) such as Roe
and CFDS are very accurate in the viscous region. But the FDS scheme
produces nonphysical solutions when the grid is aligned with strong shock
wave in hypersonic flow around a cylinder or spherical body. This is called
the carbuncle phenomenon. Many researchers have observed this kind of
shock instability when the shock and the grid become parallel to each
other, making it look like a grid-aligned shock problem. The work of
Quirk® is particularly enlightening on this aspect. The often-used remedy
to cure the carbuncle flaw is via certain parameter-based switch in the
regions where such phenomenon appear. It is observed that the bow
shock begins to break up when the magnitude of the velocity component
parallel to the shock becomes zero. But the shock instability can be cured
if we identify the eigenvalue corresponding to that velocity component and
replace it which is nearly zero with other plausible values where necessary.

The objectives of present study are thus to revisit the carbuncle
phenomenon which is especially paramount to Roe and CFDS schemes, to
analyze its cause in terms of physical property changes across the shock
and to offer possible remedy for the problem. The idea of Sander et al! is
incorporated into the CFDS method and is shown to provide a stab.e shock
capture for the Mach 8 blunt body flow adapted as a benchmark case.

2. Numerical Method

The governing Navier-Stokes equations employed in the generalized
coordinate system, (£, 7, ¢), are expressed for the conservative variable
vector as

Oq . 8 e _d_ _
TG+ 2e(F+ F)+--(C+ G + 55 (A+ B) =0 1
where F, 0, and B are inviscid flux vectors, and F,, &G, H, are viscous

flux vectors. The inviscid fluxes are linearized and split for upwind
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discretizations by
A F=2Ang=( A+ A)ag and A'=MT A" T ' M’ 2
yielding
J 'og + A+V5q+ A b,q+ B+Vﬂq+ B ag+ C+V¢q+ C a,q

+ (viscous terms) = ( (3)

where 8g=g¢""!— ¢" and the overbar means the associated variable is

.

space-averaged over the interval, [j, j+1l. M or M 'is a transformation
matrix between the conservative variable vector ¢ and the primitive variable

vector, say, ¢q. T or T s defined to be a transformation matrix between

>

the primitive variable vector q and the characteristic variable vector, say, q.

The formulation procedure can be summarized as follows: i) AF known, ii)

Ag, &g defined iii) M, M ' determined from & g= M_lAq, iv) A
determined from AAg= M_IAF, v) A known/satisfies | A— A | =0, vi)
T'A=AT " determines T 'or T,

The strength of current formulation, termed as Characteristic Flux

Difference Splitting (CFDS) scheme, is to enable one to switch the
difference equation from the conservation form

L a0+ MTA T W 20=0 @
to characteristic form

th 8q+A4q=0 (5)
rather easily written for one-dimensional case for the sake of simplicity.
Details of the formulation and its applicability to characteristic boundary
procedure are given in Ref. 12.

When the eigenvalue becomes zero in Eq. (5), there is no convective
wave information traveling to that point as occurs in the stagnation line.
Since the CFDS formulation also splits the eigenvalue as

A=A +A~ (6)
this splitting is also susceptible to carbuncle problem when 4, becomes
zero. When the velocity component parallel to the shock becomes zero, the
associated eigenvalue matrix becomes
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Thus it is necessary to prevent the eigenvalue component from becoming
zero. This can be done via
A=+ =AY+ +( -9 (8
with a proper choice of &. Sanders et al! recently finds the H-correction
method work well preventing the bow shock instability via

A e=maxAe vz e, Ajasrsz s Ajk—1722 Attt > AL a-172)-

On the other hand, the entropy fixing method proposed by Harten" and its
variants can eliminate the shock instability problem. But this method is
advisable only for the strong shock flows since this injects excessive
numerical dissipation in the viscous region. Quirk also prcvides a
convenient way of checking the occurrence of shock from a pressure ratio
test %)a, where a=20 is used for the present study. In the
present study for blunt body flow calculations, the entropy fixing formula
employed are

1) for the Roe scheme

M|=("12—;—EL2) if 1A]< e and 9
ii) for the CFDS scheme

A= (A yusion() it 141 Ce (10
with e=2.0.

3. Numerical Experiments
An example case is run for a hypersonic flow past a cylinder at Mach

8 with 2=0. The same flow was investigated by Nakamori®” in corjunction
with overcoming the carbuncle phenomenon. It is thus our purpose to
compare present results with those of Ref. 13 and to see if the proposed
modification we are incorporating work well in light of the known results.
The computational grid as shown in Fig. 1 consists of 101x50 for (¢, 7).
Figure 2 shows the blunt body flow using van Leer’'s FVS scheme for the
Euler equation with CFL number of 0.6 which is free from carbuncle
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phenomenon. Mach and pressure contours are shown in Fig. 2, exhibiting a
strong bow shock in front of the body. Distributions of pressure, density,
and temperature along the stagnation line are also presented in Fig. 2(c)
showing a stiff jump across the shock layer. Euler equation is integrated
by four-step Runge-Kutta method. In contrast, as shown in Fig. 3, the
Roe scheme suffers from the serious carbuncle phenomenon. The
stagnation properties are also poorly calculated showing breakdown of the
shock formation. However, Fig. 4 shows a stable capture of the shock with
the Roe scheme where the physical variables show a perfect match
between those in Fig. 2(c) and in Fig. 4(c) after utilizing the A fix given
in Eq. (9) above. However, temperature and density profiles near the wall,
x=0, display slight tail-off or tail-up compared to the van Leer's results.
This is probably due to insufficient number of iterations in the Roe case,
showing a slower convergence near the wall.

The same problem was solved by the present CFDS scheme with first
order DDADI integration method and characteristic boundary conditions.
Figure 5 contains Mach and pressure contours as well as stagnation line
properties. Being a variant of Roe-type scheme, the unmodified CFDS also
yields carbuncle problem as was observed by the Roe scheme without A
modification. After utilizing the A modification as given in Eq. (10) above,
stable results are obtained as shown in Fig. 6 in terms of the same
quantities which compare well with those obtained earlier in Figs. 2 and 4.
Comparison of the A, distribution is given in Fig. 7 between the original
Ay and the modified A;, showing a monotonic variation of original A; and
a sudden jump of A; in the modified case. The modified A; curve is
similar to van Leer's flux variations against Mach number value'®®. In Fig.
7, the grid point j=51 corresponds to the stagnation line, but the value of
A; changes its sign at the interval [50,51] due to the averaged nature of
flux-difference formulation.

Other physical variables are also compared in Fig. 8 along the
stagnation line between the original A; and the modified A, cases in terms
of entropy change, total enthalpy and the u-velocity. In the numerically
unstable case, the entropy decreases and the u-velocity component becomes

negative across the shock layer. On the other hand, for the A-modified
case the total enthalpy shows no change, the entropy increases and the
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u-velocity decreases but maintains the positive sign as in Fig. 8(b). Figure
9 displays the velocity vector plots near the distorted shock region in Fig.
9(a) and the well-behaved velocity vectors in Fig. 9.(b). It shows the
presence of big circulation behind the shock with the reverse u-velocity
which becomes larger and larger as the iteration proceeds. The cause of
this carbuncle phenomenon is believed to stem from the A splitting

A=AT+A7 according to the sign of A. When A=0, the convective part of
flux disappears feeding unphysical flux into the system.

Concluding Remarks:
The carbuncle phenomenon has been investigated in the CFDS framework.
The CFDS being a flux-difference family also suffers from shock
instability problem. To circumvent this, Sanders-type A modifications have
been applied among currently available A fixes reported in the literature.

The success with Sanders-type A fix applied to the CFDS enables one to
apply the CFDS method to a more wide range of flows with spzed and
complexity, resulting in remarkably improved solutions, for example, for a
complex jet impingement problem within a confined geometry. However, it
remains to prove that the current type of A fix is really universal to
warrant a permanent CFDS correction.
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Figure 2. Hypersonic flow solved by the van Leer scheme at Mach 8
(a) Mach contours; (b) Pressure contours; {c) Stagnation line properties
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Figure 3. Hypersonic flow solved by the Roe scheme at Mach number of 8

(a) Mach contours; (b) Pressure contours; (c) Stagnation line properties

(a)

p,tho, T
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Figure 4. Hypersonic flow solved by the Roe scheme (eigenvalue modified)
(a) Mach contours; (b) Pressure contours; (c) Stagnation line properties
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Figure 5. Hypersonic flow solved by the CFDS scheme at Mach 8

(a) Mach contours; (b) Pressure contours; (c) Stagnation line properties

(a) (b) (c)

Figure 6. Hypersonic flow solved by the CFDS scheme at M=8( A; modified)

(a) Mach contours; (b) Pressure contours; (c) Stagnation line properties
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Figure 7. Comparison of A; and modified A,
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Figure 8. Stagnation line properties between (a) A; unmodified and (b) A,
modified cases.

Figure 9. Velocity vectors with carbuncle(left) and w/o carbuncle(right)



