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Abstract

Kerne] estimator is very popular in nonparametric density estimation. In this
paper we propose an estimator which reduces the bias to the fourth power of
the bandwidth, while the variance of the estimator increases only by at most
moderate constant factor. The estimator is fully nonparametric in the sense
of convex combination of three kernel estimators, and has good numerical
properties.

1. Introduction

Nonparametric methods have received a lot of attention in density
estimation, and the kernel density estimation is very popular among them.
Best references in this area are Silverman(1986) and Wand and Jones(1995).

To reduce the bias in kernel density estimation, higher-order kernels
are usually used. Recently Cheng, Choi, Fan and Hall(2000) suggested a
bias reduction technuque by using a skewing method which is suggested and
discussed by Rice(1984) and Choi and Hall(1998) in the regression context.
In fact, Cheng, et.al(2000) used a locally parametric method discussed by
Copas(1995), Hjort and Jones(1986) and Loader(1996), and they argued that
the resulting estimator reduces the bias to the fourth power of the bandwidth,
while variance of the estimator increases only by at most a moderate constant
factor.

In this paper, we suggest an estimator which has same asymptotic
properties, in the sense of bias and variance as the estimator suggested by
Cheng, et.al(2000). As in the estimator by Cheng, et.al(2000), we also used
a skewing method, hoewver, instead of the locally parametric estimation, we
used a fully nonparametric method, i.e., a kernel estimator. One disadvan-
tage of our estimator is that the nonnegativity is not guaranteed, but we
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suggest two versions correcting for nonnegativity. In Section 2, the proposed
estimator is introduced based on a motivational example, and its asymptotic
properties are derived. Also two versions correcting for nonnegativity are
discussed. Numerical properties of the proposed estimator will be illustrated
in Section 3.

2. The Proposed Estimator

2.1 The Estimator

Let X, -+, X,, be random sample from a distribution with an unknuwn
density f(-),which we wish to estimate. The kernel estimator of f at z is

fo) = S KESS, )

where h is the bandwidth, and K is the kernel function.

One typical feature of the nonparametric estimators including the ker-
nel estimator underestimate at peaks and overestimate at troughs. This
phenomenon is well illustrated in Figure 1 which shows the kernel density
estimator f based on n=100 random rample from N(0,1) with the Gaussian
kernel and the optimal bandwidth h=0.422.

Motivated by this phenomenon, we suggest as an estimator at z

~ MA@ + F(@) + Aafalz)
N A +14+ X

f(2) ) (2)

where A, Ay > 0 are weights, I; < 0,1, > 0 are contants to be determined,

~

filg) = f(z + ;) — Laf' (z + 1;R),§ = 1,2, (3)

and . e X

£ . ' — Ay

fl(=) = ;L—h—QZK (=)
is the kernel estimator of f’, the first derivative of f, i.e., the suggested esti-
mator f(z) is a convex combination of fi(z), f (z) and fy(z). The estimator
fj(a:), J = 1,2, represent values of the tangent line evaluated at = + [;h. See
Figure 2 for clarity.
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Therefore, f(z) will be larger than f(z) where the point of interest z
is located at peak area. Similarly, f(z) will be smaller than f(z) where z
is located at trough area. Therefore, we can expect that the bias of f(z) is
smaller than of f(z). In fact, by choosing A\; = A2 = A\, [} = —la = I(}), say,
and
1) = {(1+ 20/ (2N)}2, (4)
where 1 = [u'K(u)du , it can be shown that the bias of f(z) is O(hY),
while that of f(z) is O(h?). The following theorem, whose proof is in the
Appendix, shows the bias of f(z) in detail.

Theorem 2.1 (Bias of f). Assume that f has four bounded, continuous
derivatives in a neighborhood of ; that the kernel K is nonnegative, bounded,
symmetric, with [ K = 1; and that h — 0 and nh — oo. Take A\| = Ay =
A>0andly = =l =1()). Then,

E[f(z) — f(z)] = B(z)h* + 0,{h* + (nh)~*/?},

where
@ ()
24

3(1+5A)

B(z) = ) p2’}.

{,U4 -

After tedious and lengthy algebra, although conceptually simple to
derive, we obtain asymptotic variance of f(z).

Theorem 2.2 (Variance of f). Assume the same conditions imposed on
K and h in Theoram 2.1, and A\ = Ay = A\l = —ly = (\).Then

Var[f(z)] = —J;%V()\) +0p{(nh)~'},

where
V) = (23 +1)7222%+ 1)/K2(t)dt+4>\/K(t)K(t+l)dt
+2/\2/K(t—— DK(f + )t
PN+ Do [{E (1) = K(t = DK (2 + D)t
Remark 2.1 : The case A = co. Choosing A = oo in the definiton of f we

obtain f = %(fl + fz) We can easily show that the bias of f with A = oo is
O(h?).
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Remart 2.2 : The choice of A\. Choi and Hall(1998) suggested using
A minimizing V(A), and their suggestion can be used in this situation, too.
Another possibility is using A minimizing MISE, however, it is computation-
ally difficult. The minimizer of V'(}) varies from 0.1 to 1.0 depending on the
kernel K. In general, the choice of A is not very sensitive to the estimator f.

2.2. Corrections for Nonnegativity

Since the estimator f(z) in (2) is not guaranteed to be nonnegative,
we consider some corrections for nonnegativity.

First, note that fi(z) in (3) can be regarded as the approximated form
of

f1(@) = f(o + hh)esp{—Lhf' (z + hh)/f(z + 1)} (5)

by the Taylor expansion of f(z) to the linear term. Note that f3(z) is very
similar to the estimator f.(z) suggested by Cheng, et.al (2000). In fact,

fula) = 3+ (0) + F-(2)), ©

where

~

fi(z) = flo + lh)eacp[%lz _ %{z +hf'(z £ 18)/f(z + B},

Therefore, X R R '
2oy _ AU (@) + (@) + Aef*(x)
fila) = M1t N

is always nonnegative, and we can find [y, [, A\;, A5 such that the bias of f (z)
is O(h*). However, it turned out that the corresponding | = —I; = [, depends
on the unknown density f which is also undesirable.

Recently, Glad, Hjort and Ushakov(1999) suggested correcticn of den-
sity estimators which may not be nonnegative or/and do not integrate to
one. They showed that the corrected estimators has smaller mean integrated
squared error than the original estimator.

_ Remark 2.3 : In our limited experience, we didn’t get negative values
of f(x) so far except a very extreme case such as the separated bimodal.



3. Numerical Results

For the Gaussian density, we compare f with a standard second-order
kernel estimator f in (1), two-parameter locally parametrie estimator by

Cheng, et.al (2000) f in (6), and a fourth-order kernel estimator fiay- N(0,1)

is used as a kernel for f, f, fo, and 2(3 — z%)¢(z) is used as a kernel for f(4),
where ¢(z) is N(0,1) pdf. Also, we used sample size n=100.

Figure 3(a) shows the mean integrated squared error(MISE) perfor-
mances of four estimators.

As anticipated, f performs worst, and f, foo, f(4) perform similarly.
Among them, f is slightly better than f,, and f4). Figure 3(b) shows the

four estimators with the true density. The peak is captured better by f than
by others.

Appendix : Proof of Theoran 2.1

Let v, = [t K'(t)dt , then vy = vy = 0. Now, by a Taylor expansion, it is
easy to show that

BIf@) = £(&) + 5h 1" @) + b 7O (@hss + O(R),

E[f(x + lh)] = f(:c) -+ h[f’(x) + %hQ(F + #2)fu(x) + _é_h3(l3 + 3l,u2)f'”(z)

1
+ =B (I + 6%y + pa) 9 (z) + O(R),

24
and
E(f'(z+1h)] = —nf'(z) - nhif"(z) - éh2(312u1 +v5)f"(2)
—%h3(4l3u1 + 4lvg) fU (z) + O(RhY).
Therefore,

BlAE) = &)+ M@+ 0)+ 500 + s + 200 ()
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1
+6h3l(lz + 3y + 3120, + 13) f"'(2)

-I-—2lzh4(l4 + 61209 + pa + 4ty + 41205 F 9 (2) + O(KP).(A.1)

By substituting [ = 0,1y, in (A.1), and combining them to produce a for-
mula for bias, we see that the terms in h? and h3 disappear if and only
if

(2) )\1[1 + )\2[2 = O,
(ZZ) /\1{l12(1 + 2111) + MQ} + o + Ag{l22(1 + 21/1) + /JQ} = 0,
(Zl’L) )\1[1{[12(1 + 31/1) + 3#2 + 1/3} + )\2l2{122(1 + 31/1) + 3/.&2 + 1/3} =0.

If we assume that Ay, A2 > 0 and A;, A # 0, (i) and (iii) imply that
Al =Xy =X and \; = —)\; = A, say. Now (ii) gives | = [(A) given in (4).
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Figure Legends

Figure 1 : N(0,1) (——), kernel estimator fl@) (- ), and the proposed
estimotor f(z) (- - - - - )-

Figure 2 : Convex combination of three kernel estimators.

Figure 3 : (a) MISE of four estimators : kernel estimator fl@) (e )s
the proposed estimator f(z) (- - - - - ), the locally-parametric estimaotr
foo(2) (= - -), and the fourth-order kernel estimator fs(z) (— —).
(b) Plot of four estimators for the true density N(0,1).



On Bias Reduction in Kernel Density Estimation

0.5

0.4

0.3

0.1

s
-
s
’

& hatfiy)

x+(11)h X x+(12)h



MISE

0.010 0.015 0.020 0.025

0.005

0.1 0.2 0.3 0.4 0s

0.0

A3, e, A9A

7
/
/
A /
/
h /
h /
h /
h /
h /
h /
N \ /
N / //
~ \ y /
\\ \ / //
\\ \ / I
~ N \ , /
AN N // //
~ ~_ /
~ N /\ )
el < ~ ’
R e S S P
— _ >< ................... \\ ) .
—————— T = ~~ ~r” ’ e -
T T T T . : | |
14 1.2 1.0 0.8 -0.6 -0.4 -0.2 0.0
Ih




