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ABSTRACT

A Bayesian criterion is proposed for a multiple test of two independent multi-
variate normal populations. For a Bayesian test the fractional Bayes factor(FBF) of
O’Hagan(1995) is used under the assumption of Jeffreys priors, noninformative im-
proper proirs. In this test the FBF without the need of sampling minimal training
samples is much simpler to use than the intrinsic Bayes facotr(IBF) of Berger and
Pericchi(1996). Finally, a simulation study is performed to show the behaviors of the
FBF.

Key Words : multivariate normal populations; Jeffreys prior; noninformative improper
prior; fractional Bayes factor(FBF); intrinsic Bayes factor(IBF); posterior probability.

1. INTRODUCTION

Let II; and II; be two independent p-variate normal populations, where for k¥ = 1,2,
Iy ~ Np(pk,Ex) with a p x 1 unknown mean vector px and a p x p unknown covariance
matrix ¥. Suppose that we wish to do a multiple test composed of four hypotheses,

H(): y1;£p2 and 217422,

H1: M1 = M2 and 21=22, (1 1)
Hy: py#p2 and Xy =3, , '
Hz: py=p and ¥ #%; .

In classical approach on the test problems of two independent normal populations there are
various tests depending on whether two unknown means or covariances are equal or not. A
multiple test is a merit of Bayesian test compared with the classical test of generally testing
the null hypothesis versus the alternative hypothesis. A multiple test of (1.1) is to test
two multivariate normal populations without any condition or previous information on the
equality or the unequalness of two means or two covariances. Kim and Kim(2000) used the
arithmetic intrinsic Bayes factor(IBF) of Berger and Pericchi(1996) for a multiple test of
(1.1). But in case of using the IBF the number of minimal training samples to be sampled
becomes tremendously big as the dimension of multivariate is bigger.

In this paper, we find a Bayesian criterion for a multiple test of two independent multi-
variate normal populations using the fractional Bayes factor(FBF) of O’Hagan(1995) with-
out the need of sampling minimal training samples under the assumption of Jeffreys priors,
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noninformative improper priors. In the next section, the FBF, the IBF, and the posterior
probability of hypothesis are introduced. In section 3, we compute the FBF, and in section
4, a Bayesian criterion proposed in this paper is applied to some simulated data.

2. THE FRACTIONAL BAYES FACTOR
Suppose that we wish to test ¢ hypotheses,
Hi X ~ ft(Xlgl)v 91‘ € @i,

fori=1,2,...,q, with a random sample X = {X;,X,...,X,} of size n, where f;(X|6;) is
a probability density function, and 8; and ©; are a parameter vector and a parameter space
under the hypothesis H;, respectively. We define the function of a random sample X and a
constant b as follows, for i = 1,2,...,q, j # 1,

 my(Xb)
B;i(X|b) = m ,
where
ma(X[b) = / m2(6:) L2 (61X )6, (2.1)

7;(6;) is a prior distribution of 6;, L;(8;|X) = [1;_, fi(Xk|6;) is a likelihood function, and
b is a constant such that 0 < b < 1.

The usual factor Bj; as a Bayesian tool to test the hypothesis H; to the hypothesis H;
is defined by
m;(X|b=1)
ml(X|b = 1) ’

where m;(X|b = 1) is usually called a marginal or a predictive density of the hypothesis H;.

The first step in a Bayesian inference is to choose the prior distributions of all the param-
eters in hypotheses or models. Default priors, most of which are typically noninformative
improper, are objective priors that need not any subjective consideration. But the Bayes
factor B;;(X|b = 1) cannot be used because of arbitrary constants incorporated into the
Bayes factor if priors are noninformative improper priors, 7Y (4;) and w_f-v (8;), where through-
out this paper the notation of superscript N implies the noninformative improper prior or
its use, and have different dimensions in parameters. The fractional Bayes factor(FBF)
of O’Hagan(1995) and the intrinsic Bayes factor(IBF) of Berger and Pericchi(1996, 1998)
to overcome the problem due to the arbitrariness of noninformative improper priors are
automatic and objective.

The idea of IBF is to use minimal training samples &, = {X,.({),l = 1,2,...,L} to
convert the improper prior to the proper posterior density. The minimal training sample
implies the part of full sample with the minimal sample size to guarantee 0 < m» (X|b =
1) < oo for all 3. The IBF, B}i(l), given a minimal training sample, X, (!), for some [ is
defined by

Bji(X|p=1) =

BL(0) = BY(X|b=1) BY(Xn()ls = 1).

But, practically to prevent the IBF from depending on only one minimal training sample
is used an arithmetic IBF(AIBF) as substituting an arithmetic mean of B (X m(l)|b = 1),
l=12,...,L, for B{;-’(Xm(l)|b = 1) for some [/, a geometric IBF(GIBF) as a geometric
mean, or a median IBF(MIBF) as a median.
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The FBF use a fraction b of each likelihood function to change noninformative improper
priors into proper priors. The FBF is defined by

B, =BN(X|b=1)-BJ(X]b) . (2.2)

Common choice of b is b = m/n, where m is the minimal sample size. Generally, for a
Bayesian multiple test the posterior probabilities of hypotheses via the Bayes factors are
useful. Under the assumption of prior probability p; of the hypothesis H; being true the
posterior probability of H; via the FBF is given by

PH| X)={Y (0;/p)-BE}Y, i=1,2,...,q 2.3)
j=1

3. COMPUTATION OF THE FBF

Let p denote the common value of y; = pe, and ¥ the common value of ¥; = %,.
We use Jeffreys prior 7¥,i = 0,1,2,3, noninformative improper prior, for each hypoth-
esis H;,i = 0,1,2,3, under the assumption of independence between a mean vector and

covariance matrix as follows

4 2 1

7r(1)v(u1)/1'2721a22) = Co H |2k| 2(p+1), 21 > 0) 22 > 0’

k=1
—1
71-9,(/1‘17”2) Z) = c2l2 —§(P+1), > 0)
2 1

™ (,51,%) = csknllzkl‘f“’“), 1 >0, 5 >0,

\ =

where ¢;, i = 0,1,2,3, is an undefined normalizing constant.

Let Xt = {Xk1,Xk2,...,Xkn, } be a independent p-variate random sample of size ng
from I}, with a distribution Np(ug, Xk), k£ = 1,2. We use the following notation throughout
this paper,

((n = ny +ng,
X = {le‘)X(Z} )
Nk .
Xk = an/lk & ’
) _
lx =Z n"kX’“,
Vi = > (Xij— Xp)(Xes — Xi)
j=1
2 ng ’
Vo= ¥ Y (X — X)( Xy — X)
L k=1 j=1

The likelihood function L;(-}, ¢ = 0,1, 2,3, under each hypothesis is given by

( 2 ngP n ) —
Lo(pa, p2,21,%2) = [[(2n)~72 ]Ek|_‘2k“exp{—%tr[2k192]},
k=1

Li(u, %) = (2m)"F|Z| % exp{-itr[E71Q)},
n n 2 -2
Lo, ®) = @0 FEE [ exp{~3er[=t0z)), (3:2)
=1
2 ngp n
| LawEim) = TR imF en{- el ),
=1
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where @ = V +n(u~X)(p—X)', O = Vi +ne (e~ Xi)(p— Xi)', and Qf = Vi +ng(pe —
Xi) (e — Xe)'-

After using the kernel of multivariate normal density for the integration over a mean
vector and the kernel of the inverted Wishart density for the integration over a covariance
matrix the computation result of the function (2.2) with (3.1) and (3.2) is as follows

(

m (X|b) = co(2m)" H Ak(0 |vk|—4—n‘5,
mN(X[b) = c(2m)~ "”A(l)lvc n-%,
bn— 2p 3-3
) m¥ (X)) = ca@m)-SFEA@)V + Vol , (33)

my (X)) = er(en)# { 1T AW }f T {1+ We) ™ du,
where
((Ak(0) = 2’1‘—”-“—1; T, (Lo - 1)},
AQ) = 22T, {Ln - 1)},
A@R) = 28R, {(n - 2)}

P bﬂp

1 A@B) = 27T, {Lny)
Wi () (v~ Xk)S Yu Xk), Sk = Vi /Ni

(pl

L) = 2 [T

\

The integration in m¥ (X|b) of (3.3) is not analytically solved. This integration can
be performed by the numerical integration procedure or Monte Carlo integration. In a
simulation study of section 4, we estimate the integral function using the Monte Carlo
integration method through the importance sampling. In m%'(X|b), we need to compute
the following integral

_ [ _ [T 9w _ g9(p)

bn
where g(p) = HLI {1+ W, (,u)}__zﬁL , and f,(p) is an importance sampling density func-
tion. The Monte Carlo estimate of M is M = Zle %, where u;, j = 1,2,...,G, is

generated from the importance sampling density f,(u). It is well known that Var(M) is
small when f,(p) o« |g(x)| . The function g(p) can be rewritten as

2
g(p) = k]_[ exp {—1bng - In (1 + Wi (p)) }
=1
oc. exp {—(bna Wi (1) + bnaWa(u)) }
oc exp { ~F(u— o) J (4~ o)},
where the first proportional term is obtained using only the first term of Taylor series on
Wi(p) = 0 of In{1 + Wi(p)} . Thus the importance sampling density function of 4 is
Np(po, J1), where po = K X1 + (I, ~ K) X2, K = bny ($1J) 7Y, J = b(n1 ST +n25571), and
I, is a p x p identity matrix throughout this paper.
The size m of a minimal training sample equals to the condition that the marginal
density m{'(X|b = 1) of encompassing hypothesis Hp is to be finite. If ny < p, then
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rank(Vy) < ng — 1 < p— 1. -But |Vi| = 0, since a matrix V; is a p x p matrix. Hence
ng > p+ 1 for k =1,2. Thus the size of a minimal training sample is m = 2(p + 1). The
conventional selection of a fraction, b, of likelihood function in the computation of FBF is
b=m/n =2(p+1)/n. For k = 1,2 the sample size n; must be restricted to nx > [p/b] + 1,
where [-] is a Gauss symbol, in order that the arguments of gamma functions in m¥ (X|b),
1=0,1,2,3, are to be positive.

Finally, the computation of the FBF, and the posterior probabilities of hypotheses via
the FBF’s are straightforward from (2.2) and (2.3). '

4. A SIMULATION STUDY

We directly follow a simulation study of Kim and Kim(2000) originally based on the
simulation scheme in Marks and Dunn(1974). All the experiments are performed for two
independent p-variate (p = 2,4) normal samples with sample size n; = ny = 30, 200
replications, and the importance samples of size 500. Let 0, and 1, be p-variate row vectors

of zeroes and ones, respectively. Now we set y; = 0, g = [r(1 + V) ,0,—1] , where 7 is
called the measure of degree of separation of the two populations, ¥; = I, and ¥ = A,

where A is a diagonal matrix with a vector, [A-1,/2,1, /2]’ of diagonal elements. Data with
different choices, 7 = 0,2 and A = 1,4, 8 of 7 and A are generated.

Table 4.1 shows the results of the averages and the standard deviations in parentheses
of posterior probabilities for each hypothesis based on 200 replications. Also, though we
prepared frequency plots on 200 replications of posterior probabilities for each hypothesis,
we don’t present here because of the limit of space.

Table 4.1 : The averages and the standard deviations in parentheses of posterior
probabilities on 200 replications.

pl 7] A] P(MIX) P(MIX) P(Ma|X) P(Ms]X)

T | 0.0044 0.7872 0.1256 0.0829
(0.0084)  (0.1448)  (0.1061)  (0.1141)

0 [4 | 0.0425 0.1355 0.0272 0.7948
(0.0453)  (0.2085)  (0.0894)  (0.2398)

8 | 00721 0.0111 0.0012 0.9155

2 (0.1213)  (0.0626)  (0.0070)  (0.1353)
T | 00411 0.0000 0.9589 0.0000
(0.0689)  (0.0000)  (0.0689)  (0.0000)

2 [4 ] 07425 0.0000 0.2575 0.0000
(0.3064)  (0.0000)  (0.3064)  (0.0000)

8 | 0.9867 0.0000 0.0133 0.0000
(0.0535)  (0.0000)  (0.0535)  (0.0000)

T [ 0.0001 0.8685 0.1126 0.0188
(0.0007)  (0.1999)  (0.1824)  (0.0997)

0 [4 [ 00141 0.1601 0.0276 0.7801
(0.0627)  (0.2574)  (0.1060)  (0.2963)

8 | 0.0271 0.0005 0.0003 0.9721

4 (0.0942)  (0.0035)  (0.0033)  (0.0953)
T [ 0.0021 0.0000 0.9979 0.0000
(0.0158)  (0.0000)  (0.0158)  (0.0000)

2 [4 ] 06470 0.0000 0.3530 0.0000
(0.3788)  (0.0000)  (0.3788)  (0.0000)

8 | 0.9931 0.0000 0.0069 0.0000
(0.0572)  (0.0000)  (0.0572)  (0.0000)
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5. CONCLUDING REMARKS

We have proposed a Bayesian criterion for a multiple test of two independent multivariate
normal populations. The test is performed by comparing with posterior probabilities of
hypotheses via the FBF’s under the assumption of Jefferys priors, noninformative improper
priors. This multiple test doesn’t require the prior knowledge or test on the equality or the
unequalness of two means or two covariances, while the classical test requires that. Also, a
Bayesian multiple test suggested in this paper can be flexibly applied to the classical tests of
two independent multivariate normal populations. For example, the test of H(I) 13 =3
versus H, : £; # % is to reject Hy if P(Ho|X)+p(Hs|X) > 0.5. Then the Beherens-Fisher
problem, the test of H3 versus Hg, can be solved by comparing P(Ho|X) with P(H;3|X).

Concerning with the use of the IBF, the number of minimal training samples possible
over the full sample is L = (;;111 -(p’fl). For a example of n; = ny = 30, L = 189, 225 when
p=1,L=16,483,600 when p = 2, and L = 20, 308,000, 000 when p = 4. Also, importance
sampling for each minimal training sample must be performed. So, the computation of
posterior probabilities of hypotheses via the AIBF, GIBF, or MIBF which additionally need
times for sorting is a job requiring tremendous computation times. While the FBF is very
simple to use without the need of sampling minimal training samples. Also, wee can see that
the results in this paper via the FBF confirm to our theoretical expectation for the test.
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