The Diagnosis of Polymeric Insulation Materials for Outdoor in the Salt Fog

J. S. Moon · J. H. Kim · J. H. Lee · W. C. Song · H. G. Cho · Y. S. Yoo · Y. G. Park
* : Sungkyunkwan Univ. ** : KEPH *** : Yeojoo Univ.

Abstract – The ageing process was checked by leakage current monitoring in Salt Fog Method. In order to monitor leakage current, DAS with 12-bit, 8-channel A/D converter was prepared. The monitored components of leakage current were averages of the rms and peak, max peak, cumulative charge, and the cumulative number of peak pulses. The acquired data were stored to the disc periodically. And, surface conductivity was measured to investigate loss of hydrophobicity. The results suggest that surface conductivity and leakage current are well corresponding to initial loss of hydrophobicity.

1. 서론

HV 용의 절연물은 전통적으로 무기 절연물로 만들 어졌는데, 주로 자기나 유리였다. 유기 재료 특허 합성 고분자로 유한 HV 선로 절연물로 사용하게 된 것은 약 30년 전으로 거슬러 올라간다. 이러한 절연 물들은 다양한 이론으로 정해지는데, composite, nonceramic, synthetic, polymeric 등등이거, 처음 두 개의 이름이 가장 널리 사용된다. 몇 가지 인자들, 예를 들어 자기/유리와 비슷하거나 더 나은 성능, 경 량, 과정에 대한 개선된 저장성, 취급 성질, 및 취 급, 그리고 경제적 있는 가격 등의 결과로 최근에 는 복합 절연물이 널리 사용되게 되었다.

그러나, 서비스에서 주기적으로 몇 가지 문제가 발생하며, 이를 해결하기 위한 주된 관심영역은 장기간의 전기적 성능으로 절연물 weathered 및 설계와 관계가 있다.

전체적인 전기적 성능을 표시하는 지표로는 섬략 (flashover) 과 열화 (degradation)의 두가지가 있다 [1]. 이 중 섬략의 발생은 절연의 전기사고에 이어지는 가능 일직선적인 지표가 될 수 있으며, 기후나 지역적인 위치 등에 의한 환경 요인들과 출입 자체의 결합에 의한 요인 등 여러 가지 복잡한 인자들에 의해 발생하게 된다. 이 중 몇 가지 인자들은 적절한 재료의 형상 및 누설거리 설계에 의해 해결할 수 있다. 이러한 여러 인자 중 대표적인 것은 재료의 장기적 열화로서, 최근에 보고된 고분자 절연물의 선 로사고 원인 조사에 따르면, 전기적, 기계적 요인에 의한 사고가 35%를 차지하고, 64%는 장기적 열화에 의한 사고임을 나타내었다[2]. 열화의 직접적 원 인은 빈은 및 습윤에 의한 방전이 주원 요인이다. 열화전단 기술은 이러한 열화의 전기과정을 폐쇄하 여 언제 어떻게 절연물의 사고가 발생할 것이지를 결정함으로써 사고를 막기 위한 기술이다. 열화 전단 기술로는 표면 전도, 방수성, ESDD, FOV, 누설전 류 분석 등 여러 가지가 있으며, 이 중 누설전류 분 석은 on-line 상태에서 실시간으로 수행할 수 있다는 장점이 있다.

본 연구에서는 가속 열화 실험인 Salt Fog Test를 통해 열화에 따른 누설전류 성분을 측정하였다. 측정된 누설전류 성분은 실험전류, 피크전류의 평균값, 최대 피크전류, 총저항량 및 누설전류 밀스의 최수 등이다. 또한, 방수성 소실에 의한 초기 열화를 관찰하기 위해 표면전도도를 측정하였으며, 전압인가에 의한 영향을 검토하기 위해 전압을 인가하지 않은 경우와 인가하지 않은 경우를 비교하였다.

2. 실험

그림 1은 Salt fog chamber의 구조를 나타낸다. 노즐은 spraying system의 일정 10 μm 이하의 가수 용도의 압축 공기 분무식으로 최대한 자연 상태의 안개를 구현할 수 있도록 설계 되었다. Salt fog chamber는 10 mm 두께의 아크릴로서 500 mm×500 mm×500 mm 규격으로 제작하였으며, 위치는 각 시료 단 고압, 저압 측에 각각 1 개씩 설치하였다. 분무용 연소의 순응을 위하여 chamber 자체를 약 3° 정도 경사를 주었으며, 분사 노즐 전면에 편평한 직선을 선도하는 fog 분자의 영향이 직접적으로 시료에 영향을 미치지 않도록 하였다. 유량은 시험에 부합되는 양이 15 m3/min이 되도록 조정하였으며, air compressor의 압력은 0.2 MPa로 맞추었다.

실험에 사용한 시편은 85 mm×50 mm×6 mm 크 기로 잘라서 사용하였다. 시편은 ATH 함량 80 phr 의 실리콘 고무의 180 ℃에서 10 분간 경화하여 제
작하였다. 전극은 염수로 인한 산화물 반응하기 위해 스테인레스강을 사용하였다. 시험은 salt fog chamber 내에서 20°의 기울기를 갖도록 설치하였으며, 전극 간 거리는 30 mm로 하였다. 인가된 전압은 1.5 kV로 하여 전계 강도 0.5 kV/cm가 되도록 설정하였다. 염수의 용액 전도도는 1,000 µS/cm로서 no significant pollution의 오존 수위로 설정하였으며, 실험은 건조대 야크에 의해 실리콘 고무 표면이 충분히 열화될 정도의 시간인 50 시간으로 설정하였다.

Fig. 1 Schematic diagram of salt fog chamber

또한, 100Ω의 shunt resistor를 직렬로 연결하고 양단의 전압강하를 통해 누설전류를 측정하였다. Data Acquisition System은 12 bit 8 channel A/D converter를 사용하여 제작하였으며, 25 kHz의 sampling rate로 2 채널을 사용하였다. 측정된 누설전류 성분은 실험전류 및 피드백전류의 평균, 최대 피드백전류, 측정한 전류 및 누설전류 필드의 횡단 등이다.

3. 결 과 및 고 철

그림 2에서 측정된 누설전류값을 나타내었다. 누설전류값은 커다란 증가를 나타내지 않고 있음을 알 수 있다.

Fig. 2 Change of leakage current with time.

그림 3은 전압이 인가되었을 때와 인가되지 않았을 때의 표면전도도 변화를 나타내었다. 전압이 인가

되지 않았을 때 표면전도도는 약 2 시간 이후부터 포화되는 경향을 관찰할 수 있는데, 이것은 실리콘 고무 표면이 초기의 반응을 소실하여 전수성으로 전이하는 시점이 된다. 한편, 전압을 인가한 경우, 표면전도도는 표면이 전수성으로 전이하는 시간 동안에 급격히 증가하게 됨을 알 수 있다. 또한, 전압을 인가하였을 때와 인가하지 않았을 때 표면전도도의 차이는 약 4 배 가량으로 전압 인가에 의해 표면전도도가 크게 영향을 받음을 알 수 있다. 이는 표면에서 발생하는 전자도 야크에 의해 표면이 건조되는 것이 주된 요인으로 알려져 있으며, 이 외에도 전기 스트레스에 의한 표면 불량물의 파장 현상 및 불량물과 공기 및 절연물의 3 상 경계에서 전기의 증가에 의해 표면상태의 전이가 급격히 발생하기 때문으로 생각된다.

Fig. 3 Change of surface conductivity with time.

그림 3에서 나타나는 표면상태의 전이는 그림 4의 평균 누설전류 (실효값)을 통해서도 확인할 수 있다. 그림에서와 같이 표면이 전수성으로 전이하는 시간에 누설전류의 값이 급격히 증가하고 건조대 야크가 발생함을 관찰할 수 있다. 또한, 건조대 야크는 누설전류의 값이 약 0.3 mA 이상이 흡수 때에 나타나는 것을 관찰할 수 있는데, 이러한 전류는 초기 발수성이 유지되어 전자력적으로 작용하는 경우, 주로 실리콘 고무 자체의 유전율에 의한 용량성 누설전류성분으로 볼 수 있고, 표면의 발수성이 저하되어 표면이 건조될 때의 전류가 현저히 감소함으로 표면의 전류가 저하됨을 나타낸다. 따라서, 누설전류의 크기는 초기 표면 발수성의 소실에 따른 변화를 잘 나타내고 있음을 알 수 있다.

Fig. 4 Change of average current(rms) with time.
그림 5에 시간에 따른 축적전하량의 변화를 정극성 및 부극성으로 나누어 나타내었다. 축적전하량은 거의 선형적으로 증가하고 있으며, 정극성과 부극성의 거의 비슷한 크기임을 알 수 있다. 축적전하량의 선형적인 증가는 누설전류의 크기가 실험 시간에 따라 변하지 않고 일정하게 유지되는 실리콘 고무의 특성에 의해 나타나는 현상이다. 한편, Clean fog의 경우 부극성이 크고, salt fog의 경우 정극성이 크게 나타난다고 보고된 자료가 있으나 아직 그 정확한 이유는 설명이 되지 못하고 있다 [3]. 이러한 경, 부극성의 차이가 영향과 어떠한 연관을 가지는지에 대한 부분은 앞으로 연구가 더 진행되어야 할 것이다.

Fig. 5 Change of cumulative charge with time.

현장에 설치된 옥외용 절연물에 대한 조사 자료에서 아크의 크기에 따라 누설전류를 6등급으로 나눈 것이 보고되어 있다. 자료에 의하면, 1~5 mA 전류는 응용관참 가능한 보통 정도의 아크에 해당한다. 또한, 5~25 mA 전류는 쉽게 눈에 띄는 큰 아크이며, 그 이상의 전류는 절연물 간 사이를 교략할 정도의 가혹한 아크에 해당한다 [4]. 이 자료에 의하면, 25 mA 이상의 전류의 아래는 절연물의 심각한 손상에 대한 경보 자료가 될 수 있음을 의미한다.

Fig. 6 Change of cumulative number of pulses.

Fig. 7 Appearance of specimen(right: 50h dry-band arc, left: after removed from the fog chamber).

4. 결론

Salt fog 법에 의한 실리콘 고무의 열화 진단에 관한 실험 결과 누설전류 크기 및 표면전도도는 실리콘 고무의 발수성 소실과 밀접한 관련을 가지고 있고, 누설전류 폐스 계수와 열화 진단과 밀접한 관련을 가질 수 있다고 생각한다.

참고 문헌