이동통신 단말기에는 응용되는 적층형 세미스터 제조

윤종락*, 이현운**, 김지군**, 이석원***

심화연구소 양산소. 영동대학교 전기공학과**, 호서대학교 제어시스템공학과***

The Fabrication of Multilayer Chip NTC Thermistor for Mobile Communication Telephone
Jung-Rag Youn*, Heon-Yong Lee**, Jee-Gyun Kim**, Suk-Won Lee***
Samwha Capacitor Ltd.*, Myong-Ji Uni. Electrical Eng**, Hoseo Electrical Eng***

Abstract - Oxides of the form MnO₄-CeO₂-NiO present properties that make them useful as multilayer chip NTC thermistor for mobile communication telephone. When Mn₃Ni₂Co₃O₁₂ composition with the X = 0.12 - 0.24 at sintered temperature 1250°C, resistivity and B-constant were 300 ~ 450(Ω-cm) and 3250 ~ 3450, respectively. Multilayer chip NTC(Negative Temperature Coefficient) resistors were fabricated with 4 layer by a conventional multilayer capacitor techniques, using 100 pd paste as internal electrode and Mn₂NiO₃CeO₂ composition as NTC materials. In particular, resistance change ratio (ΔR), the important factor for reliability, varied within ±3%, indicating the compositions of multilayer chip NTC thermistor products could be available for mobile communication telephone.

1. 서 론

NTC(Negative Temperature Coefficient) 세미스터는 일반적으로 Mn, Ni, Co, Fe, Cr 등의 전이 금속산화물용 소재를 한 번에 쓰고, 온도 상승에 따라 저항이 지수적으로 감소하는 성질을 가지고 있다. 온도계수는 금속과 비슷하여 10배 이상 높으며 가동성이 용이하여 다양한 형상의 소자로서의 적응이 가능하다. NTC 세미스터는 자기 발열을 무기할 수 있는 부하조건에서 우의 온도에 따라 저항이 감소하는 온도존 특성과 주파수특성을 일정하게 유지한 상태에서 부하전류를 증가시킴에 따라 자기 발열 및 열방산에 의해 저항값이 변화하는 전류-전압 특성을 갖는다. NTC 대용도용 저항의 지수-온도 특성은 온도를 측정하기 위해 센서용으로 회로 내의 온도 보상에 사용될 수 있으나 온도 보상용(temperature compensation) 세미스터가 있는 경우, 전류-전압 특성과 전류-시간 특성을 이용한 물질적 특성 제한용 세미스터가 있다. 센서 및 회로 온도보상용용 및 기계적 특성에 저항되는 NTC 세미스터의 대부분은 리드선이나 키메어로 구성된 제품이 대부분을 차지하고 있으나 최근에는 이동통신을 탑재할 및 소형 경량화 요구되는 제품의 수요가 급증함에 따라 표면 설립형 칩 NTC의 수요가 급증하고 있다. 이동통신 단말기에 적용 칩 NTC의 입출력은 적당한 TCXO(Temperature Coefficient Crystal Oscillator), Power Amplifier, 빠트레퍼 배터리 팩(Battery Pack) 등이 있으며 특히 고온등 2차 전자기의 보안화 때문에 중점적으로 적층형 NTGA를 선택하는 것이 적합하지만, 적층형 세미스터의 경우 기존에 단판구조로 사용하였으나 적층형이면 성능 회복을 가지는 뿐 만 아니라 적층형을 사용하면 적층형의 개발이 여러모로 이동통신용 탑재가 되는 것을 가능하게 만드는 것을 가능케 한다.

2. 실험방법

2.1 원료 제조 및 측정

본 실험에서 사용한 원료는 MnO₄, CeO₂ 및 NiO로서 99.9%의 순도를 갖는 원료를 사용하였으나 Mn₃Ni₂Co₃O₁₂의 저항은 유도기계 용도로 주로 100 ~ 1250°C의 조건에서 X를 0.12 ~ 0.24의 조건으로 사용하였다. 또한 본 실험에 사용한 합성 고온도는 1250°C에서 높게 조사하였으며, 세미스터의 기능적 특성에 영향을 미치는 요소는 제조조건에서 24시간 동안 동일한 온도로 조사하였다. 실험의 성능은 10wt% PVA 용액을 5wt% 첨가하여 200 mesh크로 파란한 후 1mm 크기의 입자로 적정 15mm, 두께 2.7mm로 채워 성형하였다. 실험의 성능은 PVA 용량을 위해 600°C에서 2시간 조사한 후, 본 실험은 1175 ~ 1250°C에서 2시간 동안 조사하였으며, 오산 및 하강 조건은 30 0°C/hr로 하였다. 실험의 성능은 PVA 용량은 200 mesh크로 파란한 후 1mm 크기의 입자로 적정 15mm, 두께 2.7mm로 채워 성형하였다. 실험의 성능은 PVA 용량을 위해 600°C에서 2시간 조사한 후, 본 실험은 1175 ~ 1250°C에서 2시간 동안 조사하였으며, 오산 및 하강 조건은 30 0°C/hr로 하였다.

2.2 적층형 칩 NTC 세미스터 제조

적층형 칩 NTC 세미스터의 제조 공정을 그림 1에 나타내었다. 세라믹 블트와 binder의 비율은 62 : 38로 하였으며 이에 세라믹 블트의 입구는 0.8 ~ 1.2 (μm)이고 binder는 Ferro화에서 제공하는 종합 binder인 B73210을 사용하였다. Binder의 블트를 16시간 동안 조사한 후 다타블레이드법을 사용하여 46 ~ 50 (μm)의

-1794-
sheet을 제작하였으며 내부전극은 100Pd을 사용하여 프린팅 두께는 8～10 (μm)로 조절하였다. 실험에 따라 내부전극과 sheet을 적층 압착한 후 1.96 (W) × 0.92 (L) × 0.9 (t) (mm)로 절단하였다. 절단한 시편을 바이너리 탈지한 후 350℃에서 5시간 둔하였으며 이때 얇은 속도는 25℃/분, 하강속도는 20℃/분으로 하였다. 바이너리 탈지가 끝난 시편을 분당 3℃로 상승하여 250 0℃에서 2시간 유지한 후 분당 5℃로 하강하여 소결을 완료하였다. 소결이 완료된 시편을 1시간 연마한 후 Ag paste를 이용하여 외부 전극을 형성하였으며 이때 온도는 650℃로 하였다.

그림 2. 소결 온도 및 조성비에 따른 비치항

그림 3. 소결 온도 및 조성비에 따른 B-정수

그림 4는 단기블레이드를 이용하여 제작한 sheet의 미세 구조 시진으로서 sheet의 표면이 동차는 현상이 없이 평탄함을 볼 수 있다.

그림 5는 적층 세미처리를 제작한 후 표면을 연마한 후의 적층 집 NTC 세미처리의 단면으로서 전극은 7층으로 구성되어 있으며 전극간 거리는 0.6 (mm)이고 전극간 두께는 50(μm)이다.
의 저항값을 얻을 수 있음을 확인하였다.
본 실험에서 제작한 적층 집 NTCP에서
의 저항값을 얻을 수 있음을 확인하였다.
본 실험에서 제작한 적층 집 NTCP에서의 저항 변화는 1000시간에서 저항
의 저항값을 얻을 수 있음을 확인하였다.
본 실험에서 제작한 적층 집 NTCP에서의 경사 변화는 1000시간에서 저항
 변화율 및 B-계수가 ±2%이내
로 이동하는 유용한 방법으로 제시된 적절한 제조의 제조
의 저항값을 얻을 수 있음을 확인하였다.
본 실험에서 제작한 적층 집 NTCP에
의 저항값을 얻을 수 있음을 확인하였다.
본 실험에서 제작한 적층 집 NTCP에
의 저항값을 얻을 수 있음을 확인하였다.
본 실험에서 제작한 적층 집 NTCP에
의 저항값을 얻을 수 있음을 확인하였다.