MnO$_2$가 첨가된 0.36PSN-0.25PNN-0.39PT세라믹스의 유전 및 압전특성

정창인*, 이종덕*, 박성만*, 이성관*, 박기열**
*서강대학교 전기전자공학과, **부산대학교 전기전자계열

The piezoelectric and dielectric properties of MnO$_2$ doped 0.36Pb(Sc$_{1/2}$Nb$_{1/2}$)O$_3$-0.25Pb(Ni$_{1/3}$Nb$_{2/3}$)O$_3$-0.39PbTiO$_3$ ceramics

* School of Electrical and multimedia Eng. Seonam Univ.
** Group dept. of Electrical and Electronics. Pusan College of information Technology.

Abstract - High power piezoelectric materials are presently being extensively developed for applications such as ultrasonic motors and piezoelectric transformer. In this study, the piezoelectric and dielectric properties of MnO$_2$ doped 0.36Pb(Sc$_{1/2}$Nb$_{1/2}$)O$_3$-0.25Pb(Ni$_{1/3}$Nb$_{2/3}$)O$_3$-0.39PbTiO$_3$ (hereafter PSNNT), which is the morphotropic phase boundary composition of the PSN-PNN-PT system, were investigated. MnO$_2$-addition into the 0.36Pb(Sc$_{1/2}$Nb$_{1/2}$)O$_3$-0.25Pb(Ni$_{1/3}$Nb$_{2/3}$)O$_3$-0.39PbTiO$_3$ composition increases the piezoelectric coefficient up to K_r at 55.6% and $Q_{fr}=252$. Moreover, MnO$_2$ addition makes tetragonal phase more stable with respect to rhombohedral phase.

1. 서 론

최근 초음파 모터와 압전변압기와 같은 고전력 장치 및 응용과 광학용 압전화의 필수요소의 연구가 활발히 진행되고 있다.(1,2) 또한, 전자장치용의 응용을 위한 압전세라믹스는 높은 전기계결합계수(K_d), 높은 응답계수(Q_m), 낮은 유전손실($\tan \delta$) 등이 요구되고 있다. PZT에서 얕혀보수스카이트 불변이 MPB를 갖는 상경계근처에서 양호한 압전특성을 보이고 있다. 또한, 현계에는 relaxor-PT계 붕괴에 대한 연구가 활발히 진행되고 있다. Pb(Sc$_{1/2}$Nb$_{1/2}$)O$_3$ (PSN)은 전형적인 relaxor 상전도물질로서 PbTiO$_3$계 압전세라믹스와 고용력선은 높은 압전특성을 나타낼고 보고되어 있다.(3,4) 압전계 메타트로 세라믹스의 대표적인 물질인 Pb(Zr$_{1/3}$Ti$_{2/3}$)O$_3$ (PZT)에 비해해서 relaxor-PT의 장점을 초형의 다양성을 높은 응답계수로, 그리고 소결과정 중 PbO의 증발이 줄어드는 장점이 있다.

1.1. Chinose 등은 Pb(Sc$_{1/2}$Nb$_{1/2}$)O$_3$

Pb(Ni$_{1/3}$Nb$_{2/3}$)O$_3$-PbTiO$_3$ 고용력의 MPB조성의 상도를 연구하였으며. 유전 및 압전특성은 우수함을 보고하였다.

본 연구에서는 MPB 조성을 가진 3성분계 0.36PSN-0.25-PNN-0.39PT (PSNNT)세라믹스에 소결착과 압전특성의 개선을 위해 MnO$_2$를 첨가하여 보통소성으로 압전세라믹을 제조하였다. 그리고 경구 및 물성특성을 측정하여 MnO$_2$의 첨가 효과를 확인하였다.

2. 실험방법

2.1 시편의 제조

본 실험에서는 유전의 조성에서 보통소성으로 시편을 제조하였다.

0.36PSN-0.25PNN-0.39PT의 MnO$_2$ x mol %에 따른 결정구조를 조사하기 위하여 X선 회절기 (Rigaku, 40kV, 30mA)로 CuKα를 사용하여 회절각 20° - 70° 사이에서 측정하였다. 소결방법은 아르
키메테스 원리를 이용하여 산출하였고, 세라믹스의 미세 구조를 보기 위해 전자현미경(SEM: Hitachi S-4700)을 이용하였다. 전역유량 및 공간-반응밀도구는 Impedance Analyzer (HP 4192A)로 측정하였고, P-E히스테리시스 극선은 RT66A로 측정하였으며, 전기 기계 결정계수 (k_a, k_t), 기계적 몰질계수 (Q_m)는 EMAS 6100에 의하여 산출하였다.

3. 결과 및 고찰

그림 1은 MnO$_2$ 첨가량의 변화에 대한 PSNNT세라믹의 X-ray 회절분석을 나타낸다. 미방수 용접이 없는 것으로 보아 완전 고용된 것을 알 수 있으며, 농면정 (rombohedral)과 정방정 (tetragonal) 구조가 혼재된 완전 perovskite 구조를 보이고 있다.

그림 2와 그림 3은 정방정 (200), 정방정 (002)와 사방정 (200)의 peak가 나타나는 45° 부근 회절과 격자 상수를 보였다. 각 시편은 정방정과 농면정이 결합하나, 미약하게 정방정이 약간 우세하게 나타나며, MnO$_2$첨가에 따라 정방정정이 약간 부정상하도 나타났고, 특히 2mol% 첨가시 정방정이 가장 우수하였다.

그림 4는 MnO$_2$ 첨가량에 따른 PSNNT편의 소결밀도의 변화

(그림 4)

(a) MnO$_2$ 0mol%

(b) MnO$_2$ 1mol%

(c) MnO$_2$ 1.5mol%

(d) MnO$_2$ 2mol%

(e) MnO$_2$ 2.5 mol%

그림 5는 MnO$_2$첨가에 따른 PSNNT세라믹의 미세구조

(그림 5)

그림 6은 MnO$_2$첨가에 따른 주파수 1kHz에서의 유전율 및 유전손실을 나타낸 것이다. MnO$_2$첨가에 따라 전반적으로 유전율이 낮은 값을 보이고 있으나 MnO$_2$첨가
가에 따른 유전율은 2mol% 까지 증가하다가 감소하고 있다. 또한 유전손실 (tan δ)은 MnO₂ 첨가에 따라 감소하고 있으며, MnO₂ 2mol%에서 가장 낮은 값을 보였다. 일반적으로 전하체 세라믹스는 소결밀도가 증가하면 유전율이 증가하는 것으로 알려져 있으며, 이 조성에서는 소결밀도와 결정구조에 기인한다고 사료된다. 즉, 능변편성보다 점양성상의 분석의 이동이 작기 때문에 유전율이 1.5~2mol%에서 증가하는 양상도 같 은 맥락으로 사료된다.

그림 7은 MnO₂첨가에 따른 P-E 히스테리시스곡선이다. 전반적으로 높은 전류분격과 낮은 전항계율을 보이며, 그림 8에 나타낸 바와 같이 MnO₂를 첨가하지 않은 시편보다 최저전에서 낮은 값을 보였기 때문에 MnO₂의 첨가량이 증가함에 따라 전류분격도도 증가하는 경향을 보인다. 또한, 형성체 Ec는 MnO₂의 첨가량이 증가함에 따라 증가하고 있으며, 2mol% 첨가시 최대의 전항계율을 보였다. 2mol%에서 형성계가 최대를 보이는 이유는 점양성상의 안정화가 중요한 영향으로 생각할 수 있다.

그림 8. MnO₂첨가량에 따른 PSNNT시편의 전류분격(Pr)과 형성계(Ec)

MnO₂가 첨가된 0.36PSN-0.25PNN-0.39PT 압전체의 압전특성은 그림 9와 그림10에 나타낸 바와 같이 전기기계결합계수 kₚ 및 기계적결합계수 Qₚ는 미완성에 따른 압전특성이 감소하는 양상을 보이며 MnO₂가 2mol% 전 데 최대값이 나타난다. 즉, 적정량의 MnO₂ 첨가가 전체적으로 압전특성을 개선할 수 있으며, 그 원인은 일차적으로 소결밀도의 증가에 있다고 사료된다.

4. 결론

MPB 조성을 갖는 0.38PSN-0.25PNN-0.39PT 에 MnO₂를 첨가하여 보통소성법으로 압전세라믹을 제작하여 물성특성을 조사한 결과 다음과 같은을 얻을 수 있었다. 제작된 모든 시편은 이차성이 나타나지 않은 완전고용이 이루어졌으며, 유전율은 약간 낮은 값을 보였으나 유전손실은 크게 향상되었다. 또한, MnO₂ 2mol% 첨가된 시편의 소결밀도와 전기기계결합계수 kₚ, Qₚ가 강 우수한 특성을 보였으며 각각 7.59 g/cm³, 55.6%, 252였다. 따라서, MnO₂의 적정량의 첨가는 점양성상이 안정해 지는 경향을 발휘하였으며, 또한, 압전특 성, 즉 kₚ, Qₚ를 크게 향상시킬 수 있었다.

[참고 문헌]

