A Study of Optical Characteristics for High Intensity LED

Myung Keun Hwang*, Jong Min Lim, Sang Wuk Shin
Korea Institute of Lighting Technology(KILT)

Abstract - The LEDs are used for signal lights including traffic signals and telecommunication equipments. Advanced foreign countries are making R&D of ultra high intensity LEDs, and the LEDs are expected to new light source.

Optical characteristics by measurements of 14 LEDs: each 2 of 3Φ R/G/Y LEDs, each of 5Φ Y/G/Y LEDs and each of high intensity 5Φ R/G/B/A/W LEDs. Comparison on chromaticity coordinate of high intensity 5Φ White LED by forward V/I.

1. 서 론

본 연구는 특수 제작된 100Φ 적분구(Integrating Sphere)을 사용하였으며 광속(luminous flux)의 측정 및 상대 분광분포(relative spectral power distribution)측정 등을 위하여 제작된 것이며, 적분구를 포함한 광속구(Integrating Sphere Photometer)시스템은 PC급 Windows98 운영체제에서 실행하였고 프로그램은 OPT-LSControl을 사용하였다.

그리고 표준으로 사용한 LED는 적정이 50Φ로서 호주의 국제공인시험기관 NML(National Measurement Laboratory)에서 측정, 공급된 것으로써 공급전압은 직류2.091V, 전류 20mA, 빛화량은 591lm이며 광속은 0.577m인 표준 발광대이오드(Reference LED)를 사용하였으며, 측정에 사용된 각각의 LED 공급전류는 각 회사별, LED의 색갈별로 공급전류가 크게 상이 하여 일정한 전류 20mA를 기준으로 측정하였다.

본 논문에서는 아래와 같이 LED의 광학적 특성은 측정, 점검하여 보았다.
- LED의 Luminous flux
- LED의 Luminous efficacy
- LED의 Peak wavelength, λp
- LED의 Weighted average wavelength
- LED의 FWHM, Δλ
- LED의 x,y Chromaticity coordinate
- LED의 Dominant wavelength
- LED의 Excitation purity
- LED의 Colorimetric purity 등

광학적 특성을 측정하기 위한 분광계 시스템에서의 데이터를 취득하기 위한 DAS(Data Acquisition System)의 구성은 분광계(monomochromator), Optical fiber input, Filter wheel system, CCD Array등으로 구성되어 있고, LED의 각광 빛을 적분구에서 분광계의 입력단(input stage)까지 전달시키는 광계이름(Optical Fiber)은 폴리물병(fiber bundle)과 다시 분광계의 출입구(entrance slit)까지 연결 되도록 되어 있으며, 분광계내에서는 빛을 spectral component로 분산시키는 회절각차(diffraction grating)가 부착되어 있다.

분광계의 CCD array는 각각의 광학적에서 광원의 상대 분광(relative spectral power)을 측정하고, 이것은 광장 간격이 사용자에 의해 설정될 수 있다는 중요한 장점을 가지고 있는데, 광장은 각 각 별위는 0.1mm에서 20mm까지 되어 있다.

2. 본 론

2.1 측정

분광 측정(Spectral Measurements)은 LED와 같은 어두운 배경(luminous flux)측정에 대하여 100Φ, 2000Φ의 큰 적분구는 사용할 수 없으므로 LED의 지정측정을 위해서 작은 적분구를 사용하는 데, 구간 제한을 정밀한 V(λ)를 얻을 수 없으므로 LED의 광속(luminous flux)측정은 상대 스펙트럼으로 측정되는데 분광 측정(spectral measurement)을 위하여 광계이름(optical fiber)을 적분구에 연결하고, 광계이름의 다른 한쪽 면은 분광계(monomochromator)의 입력단자(input port)에 연결되며, CCD Array는 분광계(monomochromator)의 출력단자(output port)에 부착된다. 분광계는 광계이름에 들어오는 광을 스펙트럼 조성이(consituent spectrum)으로 분리시키기 위하여 회절각차(diffraction grating)를 사용한다. 회절각차는 CCD Array에 따른 광장을 추기 위하여 회전되어 2개의 회절각차(diffraction grating)
를 포함하고 있다. 첫번째 격자(grating)는 250nm의 붉은 각도(blaze angle), 즉 최대능력(maximum efficiency)을 갖고 있어서 자외선 영역 측정(UV band measurement)에 적합하며, 두번째 격자는 500nm의 붉은 각도(blaze angle)를 갖고 있어서 가시광 영역 측정(visible measurement)에 적합하다.

그림 3. 측정에 사용된 3Φ, 5Φ LED의 외형도

표1. 발광색을 표시하는 기호 및 파장범위와 보색관계
(단위 : nm)

<table>
<thead>
<tr>
<th>발광색</th>
<th>청색(Blue)</th>
<th>녹색(Green)</th>
<th>캐달(Orange)</th>
<th>적색(Red)</th>
</tr>
</thead>
<tbody>
<tr>
<td>기호</td>
<td>B</td>
<td>G</td>
<td>Y</td>
<td>R</td>
</tr>
<tr>
<td>파장범위</td>
<td>380~400</td>
<td>460~570</td>
<td>570~590</td>
<td>590~620</td>
</tr>
<tr>
<td>보색관계</td>
<td>Yellow</td>
<td>Purple</td>
<td>Blue</td>
<td>Green-Blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blue</td>
<td>Green</td>
</tr>
</tbody>
</table>

발광-diode의 종류로는 반도체 제조에 따라 InGaN (Blue, Green), AlInGaN, GaAsP(Yellow, Orange), AlGaAs, GaAsP(Red)등의 구별과 LED장의 제조로는 적색 산란수지, 튜명수지, 유리중탕을 사용하고 파장범위는 파란광장을 포함하여 발광 스펙트럼의 범위를 나타내며 주로 많이 사용되는 3Φ, 5Φ용 LED의 외형도는 그림 3과 같다.

표4 및 표5의 일반 LED(Gen.5Φ, Gen.3Φ)의 주파장, 자극온도 및 휘도온도의 증경을 살펴보면
- 홨색의 주파장은 YS, LED2, Y3으로 587, 591, 592nm 이고, 자극온도는 1.01, 0.95, 0.78이며, 휘도온도는 33, 33, 28%로 나타났다.
- 녹색의 주파장은 G5, LED3, G3으로 568, 573, 569nm 이고 자극온도는 0.99, 0.90, 0.80이며, 휘도온도는 25, 27, 25%로 나타났다.
- 적색의 주파장은 R5, LED1, R3으로 627, 638, 635nm 이고, 자극온도는 0.99, 0.72, 1.00이며, 휘도온도는 47, 35, 50%로 나타났다.
- 자극온도의 평균값은 0.937으로 측정되었으며, 휘도온도의 평균값은 홨색LED가 3.13, 녹색LED가 2.56, 적색LED가 4.04로서 적색LED의 빛도분포가 황색LED에 비해 12.7%, 녹색LED에 비해 18.4% 빛도분포가 더 높음을 알 수 있다.

표2. 각속도 측정치

<table>
<thead>
<tr>
<th>Catalogue No</th>
<th>빛도(μW)</th>
<th>빛도(μW)</th>
<th>빛도(μW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YS</td>
<td>16</td>
<td>1.99</td>
<td>20</td>
</tr>
<tr>
<td>G5</td>
<td>14</td>
<td>2.19</td>
<td>20</td>
</tr>
<tr>
<td>R5</td>
<td>15</td>
<td>2.20</td>
<td>20</td>
</tr>
<tr>
<td>LED1(红色)</td>
<td>15</td>
<td>1.62</td>
<td>20</td>
</tr>
<tr>
<td>LED2(黄色)</td>
<td>15</td>
<td>2.17</td>
<td>20</td>
</tr>
<tr>
<td>LED3(绿色)</td>
<td>15</td>
<td>2.12</td>
<td>20</td>
</tr>
<tr>
<td>Y3</td>
<td>10</td>
<td>2.08</td>
<td>20</td>
</tr>
<tr>
<td>G3</td>
<td>15</td>
<td>2.15</td>
<td>20</td>
</tr>
<tr>
<td>R3</td>
<td>16</td>
<td>2.17</td>
<td>20</td>
</tr>
<tr>
<td>적색 R-1</td>
<td>13</td>
<td>2.11</td>
<td>20</td>
</tr>
<tr>
<td>녹색 G-1</td>
<td>14</td>
<td>3.25</td>
<td>20</td>
</tr>
<tr>
<td>호박색 A-1</td>
<td>16</td>
<td>2.15</td>
<td>20</td>
</tr>
<tr>
<td>청색 B-1</td>
<td>15</td>
<td>3.19</td>
<td>20</td>
</tr>
<tr>
<td>백색 W-1</td>
<td>14</td>
<td>3.48</td>
<td>20</td>
</tr>
</tbody>
</table>

표3. 분광분포 측정치

<table>
<thead>
<tr>
<th>Catalogue No</th>
<th>빛도(μW)</th>
<th>빛도(μW)</th>
<th>빛도(μW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YS</td>
<td>12</td>
<td>1.99</td>
<td>20</td>
</tr>
<tr>
<td>G5</td>
<td>12</td>
<td>2.19</td>
<td>20</td>
</tr>
<tr>
<td>R5</td>
<td>15</td>
<td>2.20</td>
<td>20</td>
</tr>
<tr>
<td>LED1(红色)</td>
<td>15</td>
<td>1.62</td>
<td>20</td>
</tr>
<tr>
<td>LED2(黄色)</td>
<td>20</td>
<td>2.17</td>
<td>20</td>
</tr>
<tr>
<td>LED3(绿色)</td>
<td>15</td>
<td>2.12</td>
<td>20</td>
</tr>
<tr>
<td>Y3</td>
<td>10</td>
<td>2.08</td>
<td>20</td>
</tr>
<tr>
<td>G3</td>
<td>19</td>
<td>2.15</td>
<td>20</td>
</tr>
<tr>
<td>R3</td>
<td>14</td>
<td>2.17</td>
<td>20</td>
</tr>
<tr>
<td>적색 R-1</td>
<td>15</td>
<td>2.11</td>
<td>20</td>
</tr>
<tr>
<td>녹색 G-1</td>
<td>14</td>
<td>3.26</td>
<td>20</td>
</tr>
<tr>
<td>호박색 A-1</td>
<td>14</td>
<td>2.15</td>
<td>20</td>
</tr>
<tr>
<td>청색 B-1</td>
<td>16</td>
<td>3.19</td>
<td>20</td>
</tr>
<tr>
<td>백색 W-1</td>
<td>15</td>
<td>3.48</td>
<td>20</td>
</tr>
</tbody>
</table>

또한 황색LED는 녹색LED에 비해 휘도분포가 5.7% 더 높음을 알 수 있다. 고휘도 LED의 R,G,A,B,W 순으로 주파장은 각각 632, 527, 593, 471, 581nm으로, 자극온도는 0.98, 0.78, 0.99, 0.91, 0.07이며, 휘도온도는 48, 16, 35, 148, 3%로 나타났다. 황색LED의 크기로 보면 청색, 적색, 호박색, 녹색, 백색 순이었으며, 청색(B-1)LED의 휘도분포는 14.8%로 가장 높고 백색(W-1)LED의 휘도분포는 3%로 가장 적었으며 청색LED와 백색 LED의 휘도온도 비는 각 50배의 차이가 남을 알 수 있었다.

광원의 연속성은 원칙적으로 평균 연속 평가수(Ra) 및 특수연속 평가수(Ra~R15)에 의해 평가되며, 평균연속 평가수는 시험색을 기준 기준과 비교를 하여 시간적으로 조정하였음을 따라 시료 광원으로 조명하였음을 때의 CIE-UCS색도표와 있어서 변화된 평균치에서 구하는 연속 평가수로써 많은 물체색에 대한 평균적인 연속성을 표시한다.
표 4. 색도좌표 및 주파장의 측정치

<table>
<thead>
<tr>
<th>Catalogue No</th>
<th>색도좌표</th>
<th>주파장</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen.5Φ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y5</td>
<td>0.560</td>
<td>0.440</td>
</tr>
<tr>
<td>G5</td>
<td>0.431</td>
<td>0.564</td>
</tr>
<tr>
<td>R5</td>
<td>0.688</td>
<td>0.298</td>
</tr>
<tr>
<td>LED(1Red)</td>
<td>0.605</td>
<td>0.415</td>
</tr>
<tr>
<td>LED(2Yellow)</td>
<td>0.462</td>
<td>0.536</td>
</tr>
<tr>
<td>LED(3Green)</td>
<td>0.525</td>
<td>0.392</td>
</tr>
<tr>
<td>Y3</td>
<td>0.438</td>
<td>0.560</td>
</tr>
<tr>
<td>R3</td>
<td>0.714</td>
<td>0.286</td>
</tr>
<tr>
<td>접착 R-1</td>
<td>0.703</td>
<td>0.291</td>
</tr>
<tr>
<td>접착 G-1</td>
<td>0.722</td>
<td>0.710</td>
</tr>
<tr>
<td>접착 A-1</td>
<td>0.599</td>
<td>0.407</td>
</tr>
<tr>
<td>접착 B-1</td>
<td>0.137</td>
<td>0.088</td>
</tr>
<tr>
<td>접착 W-1</td>
<td>0.327</td>
<td>0.340</td>
</tr>
</tbody>
</table>

표 5. 자극순도 및 휴도순도의 측정치

<table>
<thead>
<tr>
<th>Catalogue No</th>
<th>자극순도(Ph)</th>
<th>휴도순도(Ph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen.5Φ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y5</td>
<td>1.01</td>
<td>33</td>
</tr>
<tr>
<td>G5</td>
<td>0.99</td>
<td>25</td>
</tr>
<tr>
<td>R5</td>
<td>0.99</td>
<td>47</td>
</tr>
<tr>
<td>LED(1Red)</td>
<td>0.72</td>
<td>35</td>
</tr>
<tr>
<td>LED(2Yellow)</td>
<td>0.95</td>
<td>33</td>
</tr>
<tr>
<td>LED(3Green)</td>
<td>1.00</td>
<td>27</td>
</tr>
<tr>
<td>Y3</td>
<td>0.78</td>
<td>28</td>
</tr>
<tr>
<td>G3</td>
<td>1.00</td>
<td>25</td>
</tr>
<tr>
<td>R3</td>
<td>1.00</td>
<td>50</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5Φ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>접착 R-1</td>
<td>0.98</td>
<td>48</td>
</tr>
<tr>
<td>접착 G-1</td>
<td>0.78</td>
<td>16</td>
</tr>
<tr>
<td>접착 A-1</td>
<td>0.99</td>
<td>35</td>
</tr>
<tr>
<td>접착 B-1</td>
<td>0.91</td>
<td>148</td>
</tr>
<tr>
<td>접착 W-1</td>
<td>0.07</td>
<td>3</td>
</tr>
</tbody>
</table>

표 6. 고회도 백색 LED의 연색평가수

<table>
<thead>
<tr>
<th>색도좌표</th>
<th>고회도 백색 LED W-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.327</td>
</tr>
<tr>
<td>y</td>
<td>0.340</td>
</tr>
<tr>
<td>센도</td>
<td>5070</td>
</tr>
</tbody>
</table>

표 7. 표준광 C, A, D65의 색도좌표

<table>
<thead>
<tr>
<th>표준광</th>
<th>XYZ색 표시계</th>
<th>Xy0Y0Z0색 표시계</th>
</tr>
</thead>
<tbody>
<tr>
<td>표준광 A</td>
<td>x=0.447 6 y=0.407 4</td>
<td>x=0.451 2 y=0.405 9</td>
</tr>
<tr>
<td>표준광 C</td>
<td>x=0.310 7 y=0.316 2</td>
<td>x=0.310 4 y=0.319 1</td>
</tr>
<tr>
<td>표준광 D65</td>
<td>x=0.312 7 y=0.329 0</td>
<td>x=0.313 8 y=0.331 0</td>
</tr>
</tbody>
</table>

그림 5. 표준광 D65의 색도좌표와 측정된 고회도 LED의 색도좌표(a) 및 LED의 종류별 색도좌표(b)

3. 결 론

일반적으로 사용되는 LED의 광조(Luminous flux) 평균 값은 32.2mlm, 고회도 LED의 평균 광조값은 1646 mlm으로써 약 5.1배의 광조 차이를 알 수 있으며, LED의 색보임, 제조회사별 큰 차이가 나는 것을 측정해 알 수 있었다.

광장값이 최고 큰 것은 고회도 R-1으로 430mlm으로서 일반 LED 평균값에 비해 13.3배의 차이를 알 수 있었고, LED의 효율(Luminous efficacy) 평균 선호값 3Φ는 0.805lm/W, 5Φ는 0.833lm/W, 그리고 고회도 5Φ LED는 35.38lm/W로서 기준에 일반적으로 사용되는 3Φ, 5Φ LED에 비해 각각 43.9, 42.5배의 큰 차이가 나타났다. 고회도 LED R-1은 168lm/W로서 일반 LED에 비해 무려 135배나 큰 차이를 알 수 있었다.

고회도 LED의 주파장(Dominant wavelength)는 R, G, A, B, W 순으로 각각 632, 527, 593, 471, 581nm으로 측정되었고 LED의 자극순도(Pe)와 휴도순도(Pe)에서 고회도 정색의 휴도순도는 148%로 가장 높았고 고회도 백색 LED의 휴도순도 5%에 비해하면 약 50배의 큰 휴도순도의 차이가 있음을 알 수 있었다.

현재의 고회도 LED는 항공장애, 교통신호등, 자동차의 테일램프, 브레이크 램프등에 사용되고 있으며, 이는 전자기의 HP, NICHIA, Osram등에서 발광 유도에 의존하고 있다. 또한 이들 회사는 막대로 개발자들에게 하여 무성, 조명용 전원 개발에 박차를 가하고 있다. 우리나라도 진공, 전자, 통신, 조명산업의 핵심부품인 고회도 LED는 미래방향성을 목표로 한 연구개발이 정부의 적극적인 지원과 산,학,연의 적극적인 참여로써 진행되어져야 한다고 본다.

[참고문헌]

[1] KS C 7121 발광다이오드(표시등) 측정방법
[2] KS A 0061 XYZ색 표시계 및 Xy0Y0Z0색 표시계에 따른 색의 표시방법
[3] KS A 0062 색의 3측성에 의한 표시방법
[4] KS A 0074 측정용 표준광 및 표준광원
[6] CIE 127 Measurement of LEDs