전력계통에서의 유연응력시스템 적용에 의한 미소진동안정도향상

백성도 이병준 장병훈
한전 남서울전력관리처 고려대학교 전기공학부 한전 전력연구원

A study of Facts Application in power systems for the small signal Stability Enhancement
Saung-Do Bae, Byong-jun Lee, Byong-hun Jang
Namseoul Transmission Center of KEPCO, Korea Univ., KEPRI

Abstract - The supplementary controls of the FACTS are designed for the enhancement of the small signal stability in power system. The designed supplementary controllers using residue are applied to SVC or TCSC for the improving the damping ratio of dominant eigen value in the New England 39 bus test system as the sample system. The results show the validation of the supplementary controller for the enhancement of the eigenvalues which have the low frequency oscillations with poor damping ratio as the unstable problem in the sample system.

1. 서론

유연응력 시스템의 기술개발은 미국 EPR 에 의해 제안된 것으로 디지털제어와 고속 데이터 통신기술을 이용하여 전력전력계통의 신기술로 제이한으로서 보다 효율적인 유연한 전력계통의 구성을 운용도 도모하며 전력계통의 신기술이다.

유연응력시스템을 전력계통에 적용하는 가장 큰 장점은 외란의 영향을 적게 받아들인 전력계통의 제어방법을 사용하여 전력계통의 안정성을 향상시킬 수 있는 장점이 있다. 유연응력시스템의 시스템적 특성은 전력계통의 안정성과 동적분석을 통해 파악할 수 있으며, 본 연구에서는 전력계통에 유연응력시스템을 적용하여 불안정한 동적분석을 해결하기 위한 방법으로

○FACTS 보조제어기 설계를 위한 방법으로 제지류를 이용한 방법을 적용하였으며,
○이식 NEW England 39 모델계통에 대해 적용하여, FACTS 보조제어기 설계과정 및 결과의 적정성을 기술하였다.

2. 본론

2.1 상태방정식의 구성
전력계통은 능동 계통으로 고려될 수 있으며, 다음과 같은 상태방정식이라고 하는 1차 미분방정식으로 구성된다.

\[x = Ax + Bu \]
\[y = Cx + Du \] (2.1)

여기서,
○ \(x \)는 상태 벡터이며, 제통의 움직임을 나타내는 동적 변수이다.
○ \(A \)는 상태행렬이다.
○ \(u \)는 제통의 입력이다.
○ \(B \)는 제통에 대해서 입력이 어떻게 흐르는지를 정의하는 입력행렬이다.
○ \(y \)는 제통의 출력이다.
○ \(C \)는 출력에 포함된 각 상태의 비율을 정의하는 출력행렬이다.
○ \(D \)는 출력에서 직접적으로 나타나는 입력의 비율을 정의하는 행렬이다.

\[\begin{align*}
 u & \\
 B & \\
 \therefore & \\
 1 & s \\
 C & \\
 A & \\
 y & \\
\end{align*} \]

그림 2.2 싱글용계의 풀다이어그램

2.2 고유치
상태방정식의 해는 식 2.1의 타일러스 변환에 의해 구해진다.

\[\begin{align*}
 \bar{x} &= (sI-A)[x(0)+Bu] \\
 &= \frac{[(Adj(sI-A)(x(0)+Bu))]}{Det(sI-A)} \\
 &= (2.2)
\end{align*} \]

또한,

\[\begin{align*}
 \bar{y} &= C(sI-A)^{-1}[x(0)+Bu]+Du \\
 &= (2.3)
\end{align*} \]

\(\bar{x} \)의 폴(pole)은 다음의 루트(roots)이다.

\[Det(sI-A) = 0 \] (2.4)

또한, \(Det(A-sI) = 0 \)

물의 가능 계수는 상태의 수와 같다. 식 2.4를 만족하려는 \(s \)값은 고유치(eigenvalues)라고 하는 상태행렬 \(A \)의 함수로 계산된다.

안정한 계통의 모든 폴은 음의 실수부를 가지고 있으며, 모든 고유치는 복소 \(s \)평면의 좌반면에 있게 된다. 불안정한 계통은 적어도 하나 이상의 폴이 양의 실수값을 갖는다.
각 고유치(λ_i)에 대해 다음을 만족하는 열벡터_iv_i를 구할 수 있다.

\[A t_i = \lambda_i t_i \]
(2.5)

2.3 레지듀

○ 품안정한 모드를 계획하여 있어 계획하는 계획하 고자 하는 모드에 강하게 영향을 미치는 계통설비에 설치 되어야만 한다.
○ 참여행렬 P의 요소로 p_n 는 다음과 같이 정의된다.

\[p_n = t_n v_{ir} \]
(2.10)

여기서, \[\sum_i p_n = 1 = \sum_i p_n \]

○ 전달함수(Transfer function), 폴(Pole), 영(Zero), 레지듀 Residue)를 알 수 있다.
- 전달함수와 전달행렬은 (2.1)식의 Laplace변환에 의해

\[\bar{X} = (sI - A)^{-1}Bu \]
(2.11)

\[\bar{y} = [C(sI - A)^{-1}B + D]u = G(s) \bar{u} \]
(2.12)

* γ가 단일 출력, u도 단일 입력경우는 G(s)는 스칼라 전달행렬이 된다.
- 전달함수의 폴(Pole)은 상태행렬 A의 고유치가 된다.
- S가 적당한 값을 가지면 전달함수는 전달 영이되 며 입력에서 출력까지의 전달은 없게된다. 이러한 S값은 영(Zero)이라 한다.
- 스칼라 형태의 전달행렬

\[\bar{Y} = K \left(\prod \frac{(s - \gamma_i)}{(s - \lambda_i)} \right) \]
(2.13)

* 폴이 같다면 해당모드는 전달행렬로 표현된 특정 입력/출력에 대해 어떠한 참여도 할 수 없다. 이 경우 \(\nu_i B \) 가 영(Zero), C t_i 도 영 (Zero)이 되어 계획이 및 신관성은 영(Zero)이 된다.
- 전달함수는 다음과 같이 부분분으로 확장 될 수 있다.

\[G(s) = \frac{C}{\bar{u}} = \left[\frac{\sum_{i=0} c_i s^i}{s - \lambda_i B} + D \right] \]
(2.14)

위 식에서 레지듀(Residue)에 대한 표현식은

\[r_i = \lim_{s \to \lambda_i} G(s) = (C (t_i) (\nu_i B)) \]
(2.15)

여기서 \(r_i \)는 1차계 고유치(λ_i)와 관련된 레지듀 residue)이다.
- 따라서 0가 아닌 레지듀를 갖는 모드는 반드시 계획하 고 관측가능하다.

3. 레지듀를 이용한 FACTS 계획 설계 사례연구

3.1 사례계획

○ 적용될 FACTS 기기
- 병렬형 FACTS 기기로 SVC, 직렬형 FACTS 기기 로 TCSC
○ FACTS 기기설치 위치선정

- 우선 전력계통의 사례비안 행렬 고유치 계산, 이 족 최소고유치(가장블록이긴한 고유치)를 선택, 이 고유치에 대한 모드 해석을 통해 가장 참여율이 높은 모션 또는 선로를 FACTS 설치 위치로 선 정하는 방법 이용

○ 사례계통
- New England 39 모션계통 적용
○ FACTS 기기 설치위치 선정과정
- VSTAB 프로그램 이용

표 3.1 생활계통의 자료비안 행렬 고유치

<table>
<thead>
<tr>
<th>MODE No.</th>
<th>EIGENVALUE (R & D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.2065097 .000000</td>
</tr>
<tr>
<td>2</td>
<td>22.630564 .000000</td>
</tr>
<tr>
<td>3</td>
<td>41.0857933 .000000</td>
</tr>
<tr>
<td>4</td>
<td>45.551342 .000000</td>
</tr>
<tr>
<td>5</td>
<td>61.47084 .000000</td>
</tr>
<tr>
<td>6</td>
<td>66.910865 .000000</td>
</tr>
<tr>
<td>7</td>
<td>76.731506 .000000</td>
</tr>
</tbody>
</table>

표 3.2 생활계통의 자료비안 고유치 모드 1에 대한 모션참여 계산결과

<table>
<thead>
<tr>
<th>NO. BUS # NAME</th>
<th>PFACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 12 LBU12</td>
<td>0.8300</td>
</tr>
<tr>
<td>2 7 LBU507</td>
<td>0.7533</td>
</tr>
<tr>
<td>3 8 LBU508</td>
<td>0.0738</td>
</tr>
<tr>
<td>4 5 LBU516</td>
<td>0.0632</td>
</tr>
<tr>
<td>5 14 LBU14</td>
<td>0.0600</td>
</tr>
<tr>
<td>6 13 LBU13</td>
<td>0.0574</td>
</tr>
<tr>
<td>7 4 LBU94</td>
<td>0.0606</td>
</tr>
<tr>
<td>9 6 LBU68</td>
<td>0.0287</td>
</tr>
</tbody>
</table>

표 3.3 생활계통의 자료비안 고유치 모드 1에 대한 모션참여 계산결과

<table>
<thead>
<tr>
<th>NO. BUS # NAME</th>
<th>BUS # NAME</th>
<th>ID#</th>
<th>PFACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 LBU94</td>
<td>5 LBU507</td>
<td>1</td>
<td>1.0000</td>
</tr>
<tr>
<td>2 10 LBU10</td>
<td>32 GBUS3</td>
<td>1</td>
<td>0.4854</td>
</tr>
<tr>
<td>3 6 LBU506</td>
<td>31 GBUS1</td>
<td>1</td>
<td>2.571</td>
</tr>
<tr>
<td>4 6 LBU506</td>
<td>31 GBUS1</td>
<td>2</td>
<td>2.571</td>
</tr>
<tr>
<td>5 8 LBU508</td>
<td>9 LBU94</td>
<td>1</td>
<td>1.614</td>
</tr>
<tr>
<td>6 22 LBU22</td>
<td>35 GBUS5</td>
<td>1</td>
<td>1.671</td>
</tr>
<tr>
<td>7 3 LBU33</td>
<td>4 LBU94</td>
<td>1</td>
<td>1.605</td>
</tr>
<tr>
<td>8 2 LBU32</td>
<td>3 LBU93</td>
<td>1</td>
<td>1.665</td>
</tr>
<tr>
<td>9 21 LBU21</td>
<td>22 LBU94</td>
<td>1</td>
<td>1.469</td>
</tr>
<tr>
<td>10 16 LBU516</td>
<td>19 LBU91</td>
<td>1</td>
<td>1.434</td>
</tr>
</tbody>
</table>

위의 결과에 따라 SVC 위치는 12번 모션으로 결정하고, TCSC 위치는 4번 모션과 5번 모션 사이의 선로로 결정할 수 있다.

그림 3.1의 사례계획에 대해 미소신호 안정도 해석을 수행하여, 지주주 전동 주파수를 갖는 관심 고유치를 계 산한 결과를 표 3.4에서 보여준다. 여기서 나타낸 고유치는 0.2 2.0Hz 이하의 주파수를 갖으면서, 레지듀가 0.05이 하인 고유치이다.
표 3.4 New England 39 모형 계통의 관심 고유치

<table>
<thead>
<tr>
<th>모드</th>
<th>고유치</th>
<th>주파수</th>
<th>밀집도</th>
<th>대응배열기</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.41E-01</td>
<td>7.20E+00</td>
<td>1.1453</td>
<td>0.0196</td>
</tr>
<tr>
<td>2</td>
<td>-2.43E-01</td>
<td>6.22E+00</td>
<td>0.9897</td>
<td>0.0390</td>
</tr>
<tr>
<td>3</td>
<td>-3.02E-01</td>
<td>7.28E+00</td>
<td>1.1582</td>
<td>0.0414</td>
</tr>
<tr>
<td>4</td>
<td>-3.40E-01</td>
<td>8.65E+00</td>
<td>1.3772</td>
<td>0.0393</td>
</tr>
<tr>
<td>5</td>
<td>-2.69E-01</td>
<td>6.91E+00</td>
<td>1.0999</td>
<td>0.0389</td>
</tr>
<tr>
<td>6</td>
<td>-4.10E-01</td>
<td>9.03E+00</td>
<td>1.4367</td>
<td>0.0454</td>
</tr>
<tr>
<td>7</td>
<td>-4.06E-01</td>
<td>8.79E+00</td>
<td>1.3995</td>
<td>0.0462</td>
</tr>
<tr>
<td>8</td>
<td>-2.82E-01</td>
<td>5.98E+00</td>
<td>0.9517</td>
<td>0.0472</td>
</tr>
</tbody>
</table>

위의 표 3.4에서와 같이 샘플계통인 New England 39모형 계통에 대해 관심 고유치에 대한 주파수, 밀집도, 대응배열기를 보았으며, 해당배열기는 각 고유치 모드에 가장 가까웠고 높은 밀집도를 나타내었다.

그림 3.1 New England 39 모형 계통

표 3.4에서 계산된 상태평형의 관심 고유치 계산을 위해 SVC를 적용하고, 이에 대한 보조제어기와 대응배열기 이용한 방법을 통해 구성하며, 그 효과를 분석하였다. 다음은 SVC에 대한 보조제어기 설계적용과 샘플계통에 대한 사례연구이다.

3.2 SVC 적용사례

표 3.2에서와 같이 모형 참여율이 가장 높은 12번 모형 SVC 설계위치로 결정하고, 아래의 그림 3.2와 같은 SVC모델을 적용하였다.

그림 3.2 New England 39 모형계통

표 3.5 샘플계통의 SVC 적용 전, 후 관심 고유치 비교

모 | SVC 적용전 | SVC 적용후 | 대응배열기 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.41E-01</td>
<td>7.20E+00</td>
<td>1.1453</td>
</tr>
<tr>
<td>2</td>
<td>-2.43E-01</td>
<td>6.22E+00</td>
<td>0.9897</td>
</tr>
<tr>
<td>3</td>
<td>-3.02E-01</td>
<td>7.28E+00</td>
<td>1.1582</td>
</tr>
<tr>
<td>4</td>
<td>-3.40E-01</td>
<td>8.65E+00</td>
<td>1.3772</td>
</tr>
<tr>
<td>5</td>
<td>-2.69E-01</td>
<td>6.91E+00</td>
<td>1.0999</td>
</tr>
<tr>
<td>6</td>
<td>-4.10E-01</td>
<td>9.03E+00</td>
<td>1.4367</td>
</tr>
<tr>
<td>7</td>
<td>-4.06E-01</td>
<td>8.79E+00</td>
<td>1.3995</td>
</tr>
<tr>
<td>8</td>
<td>-2.82E-01</td>
<td>5.98E+00</td>
<td>0.9517</td>
</tr>
</tbody>
</table>

본 논문에서는 샘플계통의 밸런트를 위해 3.1절에서 제안된 대응배열기를 이용한 SVC의 보조제어기 설계를 수행하였다. 보조제어기 설계를 위해 우선 입력신호를 선택하여야 하며, 이를 위해 1번 모형과 2번 모형사이의 신호의 주기성을 입력신호로 하여 가공축성(observability) 및 대응배열기를 계산하였으며, 그 결과는 다음과 같다.

위에서와 같이 1-2번 선로간의 유호조류를 입력신호로 하여 신호유도 특성을 분석하였다. 위에서의 모형의 대응배열기는 -0.002828·j0.05348이며, 이를 이용하여 보조제어기를 설계하는 과정은 다음과 같다.

\[
K_H(s) = K_s \frac{sT_1}{1 + sT_2}
\]

여기서, \(R_{eq} = -0.002828\cdot j0.05348\) 이므로,
\[\varphi = 180^\circ - \arg(R_{st}) \]

\[a = \frac{T_2}{T_1} = \frac{1 - \sin\left(\frac{\varphi}{m}\right)}{1 + \sin\left(\frac{\varphi}{m}\right)} \]

\[T_1 = \frac{1}{\omega_0^2 a} \]

\[T_2 = aT_1 \]

위 절차에 따라,
\[
\begin{align*}
\varphi &= 180^\circ - 9.5966 = 189.5966^\circ \\
m &= 2 \\
\sin\left(\frac{\varphi}{2}\right) &= 0.9995 \\
a &= 1.067/1.9965 = 0.001753 \\
T_1 &= 1/(1.1458 \times 0.04187) = 20.85 \\
T_2 &= 0.0365 \\
\end{align*}
\]

따라서,
\[H(s) = \frac{s10}{1 + s \cdot 20.85} \]

위와 같이 설계된 보조제어기를 SVC 모델에 추가하여 사례계통에 적용한 결과를 표 3.6에서 보였다.

<table>
<thead>
<tr>
<th>모드</th>
<th>SVC 적용전</th>
<th>SVC 적용후</th>
<th>보조제어기 적용후</th>
<th>해당발 전기</th>
</tr>
</thead>
<tbody>
<tr>
<td>주파수</td>
<td>텐페비</td>
<td>주파수</td>
<td>텐페비</td>
<td>주파수</td>
</tr>
<tr>
<td>1</td>
<td>1.1453</td>
<td>0.0196</td>
<td>1.1458</td>
<td>0.0197</td>
</tr>
<tr>
<td>2</td>
<td>0.9897</td>
<td>0.0390</td>
<td>0.9907</td>
<td>0.0386</td>
</tr>
<tr>
<td>3</td>
<td>1.1582</td>
<td>0.0414</td>
<td>1.1598</td>
<td>0.0406</td>
</tr>
<tr>
<td>4</td>
<td>1.3772</td>
<td>0.0393</td>
<td>1.3764</td>
<td>0.0391</td>
</tr>
<tr>
<td>5</td>
<td>1.0999</td>
<td>0.0389</td>
<td>1.1007</td>
<td>0.0388</td>
</tr>
<tr>
<td>6</td>
<td>1.4367</td>
<td>0.0454</td>
<td>1.4362</td>
<td>0.0455</td>
</tr>
<tr>
<td>7</td>
<td>1.3956</td>
<td>0.0462</td>
<td>1.3993</td>
<td>0.0464</td>
</tr>
<tr>
<td>8</td>
<td>0.9517</td>
<td>0.0472</td>
<td>0.9513</td>
<td>0.0471</td>
</tr>
</tbody>
</table>

이와 같이 본 논문에서 제안한 방법으로 설계된 보조제어기를 설계한 결과, 사례계통인 New England 39모선 시험계통에서 가장 높은 텐페비를 갖는 1번 모드에 대해, 텐페비가 0.0197에서 0.0250으로 뚜렷한 개선효과가 있는 SVC 보조제어기를 설계할 수 있음을 보였다.

4. 결 론

○ 본 논문은 전력계통에 FACTS를 활용하여 불안정한 동적 문제를 해결하기 위한 방법으로 FACTS의 보조제어기 설계방법을 고찰하였다.

○ New England 39 모선계통에 해지율을 이용한 제어기 설계방법을 적용하여 SVC에 대한 보조제어기를 설계, 불안정한 동적 문제인 저주파동요현상이 일어나는 경우 텐페비를 갖는 최우선 고유지역에 대한 텐페비 개선 정책도 검증하였다.

○ 설계계통은 사례계통보다 상당히 복잡한 동적 특성을 보이고 있고, 기존 설계방식이 설계가 고안한 동적문제를 해결할 수 없으므로 이에 대한 연구가 지속적으로 이루어져 필요가 있다고 사료된다.