The Study on the AC Interference of High Power Cable on Underground Gas Pipeline

KERI*, KEPCO**

Abstract - Because of the continuous growth of energy consumption, and also the tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Moreover, normal steady state and fault currents become higher as electric networks increase in size and power. Therefore, there has been and still is a growing concern(safety of people marking contact with pipeline, risk of damage to the pipeline coating, the metal and equipment connected to pipeline, especially cathodic protection system) about possible hazards resulting from the influence of high voltage power system on metallic structures(gas pipeline, oil pipeline and water pipeline etc.).

Therefore, we analyze the interference problems when the gas pipeline is buried with power cable in the same submarine tunnel. This paper present the results of the study about interference mechanism, AC corrosion, limitation of safety voltage and analysis of induction voltage.

Key Words : AC Interference, Induction, Conduction

1. 서 론

도심지역에 필요한 에너지의 대부분은 주로 전기, 가스 및 온수의 3 가지 형태로 공급되고 있다. 이러한 에너지를 제한된 공간 내에서 공급할 때 필수적으로 수반되는 문제는 각 시설물 사이의 간섭 문제이다.

간섭은 크게 직류간섭과 교류간섭의 2가지로 분류할 수 있다. 즉, 주로 지정된 배관과 혼배관 또는 기타 배관 사이의 방식전류에 의한 직류간섭도 문제이다. 가동전력선 또는 지선전력선과 기타 지정배관의 교류간섭이 배관 및 배관 작업자 안전성 측면뿐만 아니라 최근에 문제가 되고 있는 교류부식의 관절에서 큰 문제로 부각되고 있다.

시설물 사이에 어느 정도의 상호간섭이 발생하게 된 과정에서 이 교류간섭을 충분히 정확하게 적절히 조절하지 않으면 문란하다는 것이 일반적이었다. 최근에는 사용 가능한 공간이 점점 줄어들고 따라 이러한 신호이가 소수 해석될 수 없어 최소한의 이간섭을 조절하고 있으며, 이 경우도 양 타자간의 협의에 따라 적절한 보호 조치와 함께 이간섭을 더욱 줄이기 위한 실험에 있다.

이 절에서는 교류간섭의 종류, 유형의 분류 및 외국에서 적용하고 있는 교류간섭의 제한 방해를 알아보고, 아울러 국내외의 저자들에서의 전력간섭과 가스배관이 발생할 경우, 교류부식에 대한 영향 및 심각한 결과를 제시하고자 한다.

2. 교류 간섭 종류

교류간섭은 간섭의 지속시간을 기준으로 나누거나, 또는 간섭의 메커니즘 별로 나눌 수 있다. 즉, 간섭의 지속시간을 기준으로 나누면, 주로 지속시간이 0.5초 이내의 간섭(Short-Term Interference)과 지속시간이 0.5초 이상인 간섭(Long-Term Interference)으로 나눌 수 있으며, 간섭의 메커니즘이 별로 구분하면 다음과 같다.

- 유효성 간섭(Electrostatic Interference)
- 저항성 간섭(Resistive Interference)
- 유도성 간섭(Electromagnetic Interference)

3. 교류부식

3.1 교류부식 개요

1980년대 중반까지도 교류가 강(強)의 부식의 원인이 될 수는 있지만 부식은 전류의 비례에서 여전히 높은 편으로 나타났으며, 전기방식설비용 갖추면 완벽하게 부식을 방지할 수 있다고 알려졌다. 그러나 Kulman은 방식설비용, 혈관설비용, 50(Hz), 100(A/m²) 조건의 실험에서 강의 AC부식량은 0.4(m/a)(16(mpy))로 나타났으며, 1000(m-㎝)의 토양, AC 10(V), 코팅 배관의 2.5(cm) 직경의 코팅결함부 가 발생할 때 단부식이 발생한다고 보고하고 있다.

Bruckner는 60(Hz), 철, 4종류의 토양, 75~750(A/m²)의 조건에서 실험을 통해 부식율은 전류율의 증가에 따라 2~6배까지 증가한다고 했다.

독일은 16-23(Hz)의 15kV AC전원 레일시스템과 병행하는 1980년에 준공된 플러팅스톤 코팅의 코팅시의 두 곳에 부식에 의해 구멍이 발생했다. Prinz는 부식구간을 단단한 전철시스템(single phase traction system)으로부터 빠르게 교류전압과 보호했다. 그러나 그의 방법은 안전한 전압은 임의의 수준으로부터 빠르게 교류전압과 보호했다. 그러나 그의 방법은 안전한 전압은 임의의 수준으로부터 빠르게 교류전압과 보호했다. 그러나 그의 방법은 임의의 수준으로부터 빠르게 교류전압과 보호했다. 그러
의 전선과 3(km) 동안 발행하는 6(km)의 물에 탁란 코팅된 100(mm) 직경 배관의 31구간에서 AC 부식을 발견하였다고 보고했다.

북미, 캐나다에서도 WakeLin에 의해 백색사진 4년받에 되지 않은 배관이 교류부식에 의해 폐기 부식률이 1.4(mm)/a다고 보고되었다.

따라서 상기와 같이 교류부식은 조성지에 적절이 적어 부식률이 매우 낮다고 무시되었으나, 최근 그 중요성 이 부각되여 있어 이에 대한 연구가 활발해지고 있는 추세라고 할 수 있다.

3.2 교류 전다철질이에 따른 부식률
Helm와 Pinz는 실험결과 교류 전다철질에 따른 부식 가능성을 아래와 같이 정리하였다.

\[20(A/m^2) \text{ 미만} : \text{Probably no risk} \]
\[20 \sim 100(A/m^2) : \text{Difficult to be happen} \]

100(A/m^2) 이상 : Corrosion

Gustav Peen도 20~100(A/m^2)에서의 부식률이 1.3(mm/a)라고 보고하였고, Hartmann은 현장조사 보고서에 따라 교류부식의 주요한 원인은 보일러, 코팅, 습도성에 영향을 받는 것으로 하였으며, 코팅 외부에 있는 부식률이 0.4(mm/a)라고 보고함으로써 Helm와 Pinz의 주장과 유사하였다.

3.3 코팅결합부의 영향
AC부식률은 AC 전다철질과 적절적으로 관계가 있는 것으로 나타나며 때문에 AC부식에서 코팅결합부의 크기와 토양비치량은 아주 중요한 요소이다.

Peen과 Pinz에서 코팅결합부의 영향에 따른 부식성을 알아와 같이 정리하였다.

\[1 cm^2 \text{ 이하: No corrosion probably} \]
\[1 \sim 3 (cm^2) : \text{Corrosion} \]
\[3 cm^2 \text{ 이상: No corrosion probably} \]

4. 교류부식 측면에서의 해석조건

상기의 내용을 종합시켜보면, 토양비치량이 낮고, 유도 전압이 높으며, 코팅결합부의 크기가 1~3cm^2인 경우에 부식이 발생하였다. 즉, 유도 전압이 높고 토양비치량이 낮다는 것을 유출하는 전류의 밀도가 높다는 것을 의미하며, 이로 인해 전류의 밀도가 20(A/m^2) 이상이면 부식이 발생할 수 있어 부식 가능성을 매우 높다고 판단하는 경우이 일반적이다.

따라서, 유도 부식의 경우 일반적인 토양상에서 20(A/m^2)의 전류가 효율 수 있는 조건은 아래와 같다.

\[V \geq (\rho \cdot \pi \cdot d \cdot J) / 8 \]
\[V \geq 7.85[V] \]

5. 해석 Tool

5.1 개 요
전력시설물에 의해 환경에 의해 지하에 배설된 배관에는 유도되는 전압을 해석하는 방법에는 유한요소법(Finite Element Method)과 경계요소법(Boundary Element Method) 등과 같은 수치해석법을 이용하는 방법과 절점망 해석법(Nodal Network Analysis)이 있다.

수치해석법의 경우 전력시설물과 배관 사이의 범위가 가까워질 경우 전류의 성장, 시간에 많은 예정이 따르며 정확한 해석이 어렵다. 이에 반해 \(\pi\)값을 이용하여 하위에서 해석비교는 적은 시간으로 보다 정확한 결과를 얻을 수 있기 때문에 수치 해석법의 경우 타수의 전압이 유도되는 전압을 계산하는데
많이 활용되고 있다. 따라서, 본 논문에서는 절연교 해석법을 이용하여 전력계통에 의한 전력계산을 해석하는 프로그램인 TACLINK®, CONIND™라는 사용 프로그램을 이용하여 유도전압을 해석하였다.

5.2 TACLINK®, CONIND™
TACLINK®는 절연교 해석용 프로그램으로써 해저터널 내부에서 송·배전선에 의해 가스배관에 유도되는 전압을 계산하는데 사용되며, CONIND™는 배관의 간섭 해석용 프로그램으로써 가공 송·배전선에 의해 지하에 배설된 가스배관에 유도되는 전압을 계산하는데 사용된다.

유도전압 해석에 사용된 프로그램 TACLINK®와 CONIND™의 개요는 "표2"와 같다.

표 2 유도전압 해석에 사용된 프로그램의 개요

<table>
<thead>
<tr>
<th>프로그램</th>
<th>TACLINK®, CONIND™</th>
</tr>
</thead>
<tbody>
<tr>
<td>사용언어</td>
<td>C++</td>
</tr>
<tr>
<td>제조사</td>
<td>Ground-it.com Consulting Ltd.</td>
</tr>
</tbody>
</table>

6. 해석 상정조건

TACLINK®와 CONIND™를 사용하여 아래와 같은 조건으로 유도전압을 해석하였다.

6.1 시설물
- 가스배관: 직경 30인치
- 전력케이블: 154 kV 송전선로 2회선, 22.9kV 배전선 3회선

6.2 변형거리
- 200m

6.3 파라미터 조건
- 해저터널 구간을 변형하는 154(kV) 송전선로 2회선의 상해변을 달성하여 가스배관에 유도되는 전압이 가장 작은 상해변을 결정하였으며, 유도전압이 최소인 상해변에 대하여 해저터널 변형구간의 송·배전선로 접지 유무에 대한 전장계산 및 고장장계를 해석하였다.
- 고장장계는 해저터널 양쪽단면 중앙에서 1선전력계를 모의하여 고장장계를 해석하였다.
- 또한 해저터널 구간양단에서 가스배관을 전령한 경우와 전령하지 않았을 경우를 비교하였다.

가스배관 등급에 계산에 사용된 파라미터는 "표3"에 요약하였다. 여기서, 보정비교정 값은 독립적으로 사용되고 있는 100(Ω·m)를 입력하였으며, 가스배관 강의 상해변수등비해지는 각각 300과 0.17(μΩ·m)으로 하였다. 그리고 코팅장치는 배관의 사용기간에 따라 1부터 1,000까지 값을 가질며, 폭용량에서는 100(Ω·km²)로 하였다. 기타 GMV (Geometric Mean Radius)과 Rac 등의 전력계율도 계파전력들은 EPRI에서 발간한 "Transmission Line Reference Book"의 데이터를 사용하였다.

(표 3) 가스배관 등급에 계산에 사용된 파라미터

<table>
<thead>
<tr>
<th>파라미터</th>
<th>기호</th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>보정비교정</td>
<td>100(Ω·m)</td>
<td></td>
</tr>
<tr>
<td>가스배관 금속 투과율</td>
<td>μ</td>
<td>300</td>
</tr>
<tr>
<td>가스배관 비정상</td>
<td>μ</td>
<td>0.17(μΩ·m)</td>
</tr>
<tr>
<td>코팅장치</td>
<td>R</td>
<td>100(Ω·km²)</td>
</tr>
<tr>
<td>코팅 투과율</td>
<td>cost_perm</td>
<td>2.4</td>
</tr>
</tbody>
</table>

(그림 1) 동해있는 구간 해석에 대한 개념도

발행하는 154kV 밀도-수출 지구T/L 2회선 (6개 도체, 6개 Sheath), 22.9kV 지구D/L 4회선 (12개 도체, 12개 Sheath)가 배관과 동 총 37개 도체에 대하여 각각의 점검에서 입력값들을 계산하였다. 154(kV) 지구 T/L의 케이블 입력값은 200(MW) 용량에 역할 0.91kV, 22.9kV 지구 D/L의 케이블 입력값은 101(MW) 용량에 역할 0.91kV에 계산한 값을 사용하였다. 고장장계는 50(μA)로 계산하여 해석하였다.

(그림 1) 변형 구간 해석에 대한 개념도

TACLINK®와 CONIND™를 이용하여 전력계율에 의해 지하에 배설된 가스배관에 유도되는 전압을 해석한 결과는 "표4"와 같다. 정상상태에서의 해석결과에 해저터널에서 유도전압 크기는 P 지점에서 0.9977(V)로 나타났다. 해석조건에서 (,), x는 해저터널 양단에서 T/L, D/L 그리고 배관 (pipe, pipe)과 접지와의 면적 유무를 나타낸 것이며, 유도전압이 가장 작은 상해변을 해석하였다. 지구케이블 Sheath와 접지물 Open switch 경우 Floating Error가 발생하며 154kV T/L의 경우 100,000(0), 22.9kV D/L의 경우 250,000(0)을 입력하여 해석하였다.

해저터널 구간에서 1선전력이 발생하여 고장장계를 해석할 때 가스배관에 유도되는 전압의 해석 결과는 "표5"에서 (표 7)과 같다. 해저터널 면면의 1선전력은 p1541bp와 p1541bs 그리고 r1541bp와 r1541bs 각각에 대하여 양단의 0.001(Ω)의 저항을 연장하여 해석하였으며, 해저터널 중앙의 1선전력은 q1541bp와 q1541bs 양단의 0.001(Ω)의 저항을 연장하여 해석하였다. 해석조건에서 T/L, D/L 그리고 배관 (pipe, pipe)의 , x 표시는 T/L, D/L 그리고 배관의 해저터널 양단과 전기장의 연결 유무를 나타낸 것이다. 예를 들어 p(T/L, D/L)의 표시는 p1541as, p1541bs, ..., p2294bs, p2244cas 접지와 연결되었음을 의미하고, pipe와 pipe의 표시는 가스배관에 Ci가 설치되었음을 의미한다. 1선전력이 발생할 경우 고장장계에 의해 유도전압 최대치는 약 386(V) 정도로 계산되었다.
송·배전선로에 접지치 하지 않은 것을 해석하기 위해 Sheath와 접지간의 T/L은 100,000(Ω). D/L은 250,000(Ω)의 저항 값을 입력할 경우 변전소 접지로 대부분의 전류가 출력기 때문에 배관에 유도되는 전압은 작다.

(표 4) 정상상태 해석 결과

단위 : [V]

<table>
<thead>
<tr>
<th>루프</th>
<th>T/L</th>
<th>D/L</th>
<th>pT/L</th>
<th>qT/L</th>
<th>pD/L</th>
<th>qD/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.80069</td>
<td>0.30069</td>
<td>0.10069</td>
<td>0.20069</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.80069</td>
<td>0.30069</td>
<td>0.10069</td>
<td>0.20069</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.80069</td>
<td>0.30069</td>
<td>0.10069</td>
<td>0.20069</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.80069</td>
<td>0.30069</td>
<td>0.10069</td>
<td>0.20069</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.80069</td>
<td>0.30069</td>
<td>0.10069</td>
<td>0.20069</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.80069</td>
<td>0.30069</td>
<td>0.10069</td>
<td>0.20069</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.80069</td>
<td>0.30069</td>
<td>0.10069</td>
<td>0.20069</td>
</tr>
</tbody>
</table>

(표 5) 해저터널 말단(p1541bp-p1541bs) 1선자락 발생 시 해석 결과

<table>
<thead>
<tr>
<th>해석조건</th>
<th>pT/L</th>
<th>qT/L</th>
<th>pD/L</th>
<th>qD/L</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.80069</td>
<td>0.30069</td>
<td>0.10069</td>
</tr>
</tbody>
</table>

(표 6) 해저터널 말단(r1541bp-r1541bs) 1선자락 발생 시 해석 결과

<table>
<thead>
<tr>
<th>해석조건</th>
<th>pT/L</th>
<th>qT/L</th>
<th>pD/L</th>
<th>qD/L</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.80069</td>
<td>0.30069</td>
<td>0.10069</td>
</tr>
</tbody>
</table>

(표 7) 해저터널 중앙(q1541bp-q1541bs) 1선자락 발생 시 해석 결과

<table>
<thead>
<tr>
<th>해석조건</th>
<th>pT/L</th>
<th>qT/L</th>
<th>pD/L</th>
<th>qD/L</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.80069</td>
<td>0.30069</td>
<td>0.10069</td>
</tr>
</tbody>
</table>

7. 결론

본 연구에서 유도전압의 크기를 TACLINK와 CONIND 프로그램을 사용하여 해석한 결과 (표 8)과 같이 유도전압 최소 제한치 보다 낮게 계산되었다. 따라서 별도의 전식 대책을 세우지 않아도 되는 것으로 해석되었다.

(표 8) 유도 전압 제한치와 해석 결과의 비교표

<table>
<thead>
<tr>
<th>구분</th>
<th>대상</th>
<th>유도 저류시간</th>
<th>균류치</th>
<th>계산치</th>
<th>대책</th>
</tr>
</thead>
<tbody>
<tr>
<td>간섭</td>
<td>Human Safety</td>
<td>Steady State</td>
<td>3.6(V)</td>
<td>0.96(V)</td>
<td>필요 없음</td>
</tr>
<tr>
<td>System Integrity</td>
<td>Steady State</td>
<td>7.8(V)</td>
<td>0.96(V)</td>
<td>필요 없음</td>
<td></td>
</tr>
</tbody>
</table>

(참고문헌)