A Review of Cable Condition Monitoring for Nuclear plants

Yun-Sik Kang, Chul-Hwan Kim
Sungkyunkwan Univ.

Chul-Soo Goo, Bok-Ryul Kim
Korea Institute of Nuclear Safety

Abstract - 원자력 발전소에서 사용에서는 케이블은 전원 및 제어신호를 안전하게 전달하는 역할을 하며, 비상상태 발생시에는 원자로를 안전하게 shutdown시키는 동료 역할을 하므로 매우 중요하다. 케이블 상대 감 시 시 절연 및 외피재료는 종류 및 배합내용이 다양하므로 원자로의 경우에는 같이 발생한 원자로 내의 하드웨어로 이는 케이블의 경우 노화현상의 진행이 바로 감상선 열화로 수명이 단축되므로 균열 감상선은 크고 절연상태에 대한 평가, 유사한 환경조건에 대한 추적 검토 등이 있다.

기존의 국내외 케이블 상태 감시방법을 조사 연구하므로 서 케이블 열화에 대한 수행관리 규제 기술 및 상태감 시(Condition Monitoring : CM) 기술의 평가 기준을 결정하고자 한다.

1. 서론

원자력 발전소의격당용기내의 안전관통에 사용되는 전기 기기 및 케이블류는 방사선 손실 사고를 포함한 설 계 기기사고 발생이후에도 반드시 작동되어야 하는 케 이블이다. 원전 허가로는 조절판과 동반한 인력과 비 용이 소요되므로 케이블의 안전 수명 예측과 케이블 시기 의 예측은 원자력 발전소의 안전 및 안전관리에서 중요하다. 원자력 발전소 전기케이블은 다음과 같은 이유 로 인하여 상태감시에 관한 연구가 필요하다.

①발전소 내부적으로 엄격한 환경에서 수년간 노출 되어 오는 기기로 그 영향으로 노화 감시가 발생.

②기기 노화 감시 발생시 Common mode failure(유 사한 기기의 동반한 형태 고장) 발생 가능성이 높음.

③원전 케이블은 제작시 약간 보수적으로 설계되어 대체적으로 노화에 잘 견디지만 열적인 Hot spot에는 민감함.

④케이블이 과부하로 인해 약간의 외부에 의해 노화감시되어 오산에 의한 노화상태 진단이 어려움.

⑤간곳중 원전의 경우 케이블의 손상 없이 비디오형과 로 노화상태를 진단할 수 있는 장비개발이 필요함. 따라서 방사선 상황에 케이블 전위 수명 예측에 대한 안전 관리 케이블상태감시 연구가 필요함.

본 논문을 기술하고자 하는 것은 케이블의 수명 예측 방법으로 국내외 원자로에서 주로 이용되고 있는 케이블 수명 예측방법을 비교 분석함으로써 국내 원자력 발전소에 적합한 방법을 개발하고자 한다.

2. 케이블의 구성 및 수명예측 기법원리

2.1 방사선 차폐 케이블의 구성

그림 1과 같이 원전에서 사용되는 케이블은 도체(Conductor), 절연체(Insulation), 금속 차폐물(Metallic Shields), 외피(Jacket)로 구성되어 있다. 케이블 구성요소로서 copper conductor는 300°C(150°C)의 온도에서 연속 사용 가능하며, 절연 체는 주요한 polymeric(고무) 케이블 절연 재료로써 XLPE(Cross-linked polyethylene), EPR(Ethylene propylene rubber), SR(Silicone rubber), CSPE(Chlorosulfonated polyethylene)가 있으며 XPLE는 원전 사양 케이블로 사용되는 고체절연 케이블이며 전기 특성을 우수하고 내공성, 내마모성, 열에 의한 노 화, 부식, 저온적 특성 등의 유리특성, 기계적 특성이 뛰어나며 특히, 고장이 큰 장소에 포착이 용이하다는 장점을 가지고 있다. 표 1은 원자력 발전소내에서 사용되어지고 있는 케이블 특성에 대한 표시와 같다.

금속 차폐물의 주요 기능은 계속된 케이블을 차폐하고 제로 화도의 전트 정전(electrostatic noise)을 감소시키며, 고주파 또는 필터신호의 적절한 전송을 가능하게 하는 것. 또한, 차폐는 원전 내의 사인의 사용을 과정을 방해하는 Crosstalk를 감소시키며, 방사선 차폐 재료는 플라스테일랜 고무(EPR), 실리콘 고무(SR), 하이파일론(CSPE) 등이 주로 사용된다.
원전에서 사용되는 케이블은 견납득기 내부 온도는 1 0℃~48℃로 유지하도록 설계되며 사고조건에서는 13 2℃까지 상승하고 견납득기 내부에서 표 2와 같은 조건에 견딜 수 있도록 설계되어야 한다. 그러나 대부분의 고보관 요구는 충분한 환경에서 열 및 방산기 에 의해 화학적 변화를 일으킨다.

표 2. 비주변 내부 케이블 설계기준

<table>
<thead>
<tr>
<th>메개변수</th>
<th>주변조건</th>
<th>사고후상대</th>
<th>사고후상대</th>
</tr>
</thead>
<tbody>
<tr>
<td>온도</td>
<td>49℃</td>
<td>131℃</td>
<td>97℃</td>
</tr>
<tr>
<td>압력</td>
<td>Atmospheric</td>
<td>43psi</td>
<td>15psi</td>
</tr>
<tr>
<td>슬도</td>
<td>0~50%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>방산선 선량</td>
<td>100Mrad/Hr</td>
<td>(0~30일)</td>
<td>(0~30일)</td>
</tr>
</tbody>
</table>

그림 2. 미국 원자력발전소 견납득기내에 케이블 질연 및 의뢰고 보관별 제도 요구 구성비

2.2 케이블 수명예측방법

케이블의 수명 예측 방법에는 케이블 열화에 대비한 수명 예측 방법들이 있다. 

온전시간에 따른 케이블 성질의 변화 추정에는 다음과 같은 방법들이 있다. 먼저 전기적 성질을 이용한 방법에는 부품 발전량 측정, 절연파괴도 측정, 유전손실 및 수력일 칠피층 등이 있으며 화학적 성질을 이용한 칠

표 1. 케이블 절연체 재료

<table>
<thead>
<tr>
<th>구분</th>
<th>위치</th>
<th>전압</th>
<th>절연체</th>
<th>외피</th>
</tr>
</thead>
<tbody>
<tr>
<td>고압전력케이블</td>
<td>안전관리</td>
<td>5000V</td>
<td>PVC</td>
<td>-</td>
</tr>
<tr>
<td>비안전관리</td>
<td>(RCPC온)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>저압전력케이블</td>
<td>안전관리</td>
<td>600V</td>
<td>PVC</td>
<td>Hypalon</td>
</tr>
<tr>
<td>비안전관리</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>케이블</td>
<td>안전관리</td>
<td>600V</td>
<td>PVC</td>
<td>Hypalon</td>
</tr>
<tr>
<td>비안전관리</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>케이블</td>
<td></td>
<td>600V</td>
<td>SR</td>
<td>SR</td>
</tr>
</tbody>
</table>

그림 3. 케이블 절연체 잔존연령(시간 - 로그)

3. 국내외 원전 케이블 상태 감시방법

3.1 국내외의 케이블 상태 감시방법

국내외 원전 케이블 상태 감시방법에는 여러가지가 있다. 그중 첫번째 방법으로 온전체관과 강도 측정방법이 있다. 이 방법은 케이블의 수용 유한에 의한 전기적 성질의 감시는 뛰어난 점을 통한 케이블 노화 상태 판단방법이다. 기존 케이블에 관한 데이터를 이용하는 방법으로써 비교적 간단하지만 노화진단을 위해서는 케이블의 시대의 접촉을 필요로 하는 단점도 가지고 있다. 두번째 방법으로는선화 방식량 및 출력량을 이용하는 방법으로써 비교적 간단하지만 노화진단을 위해서는 케이블의 시대의 접촉을 필요로 하는 단점도 가지고 있다.

세번째 방법으로는 EPR와 OGDEN사가 공동 개발한 Cable Indenter(Cable Indenter Aging Monitor)는 케이블 절연체 접촉점에 탐촉자를 놓고 자체의 물리적 반응을 측정하는 것으로 탐촉자의 점은 환경의 점은 영향을 덜 받는 점임에도 불구하고 접촉면의 접촉점이 작아져 있어 이를 측정하려면 기계적 장치로 인해 섬식에 의한 측정 차례가 거의 없는 점에서 보수적인 재료로 교체하는 방안을 고려해야 한다.

3.2 해당개발한 Cable Indenter는 수용 케이블 장치로서 측정이 빠르고 케이블 Indenter 측정 장치 및 조작 기록 장치가 일체되어 있으며 1조차 한 두조차로 밀착한다.

3.3 케이블 노화 단면 방식으로 EPR와 OGDEN사가 공동 개발한 Cable Indenter는 수용 케이블 장치로서 측정이 빠르고 케이블 Indenter 측정 장치 및 조작 기록 장치가 일체되어 있으며 1조차 한 두조차로 밀착한다.
3.2 국외에서의 케이블 상태 감시방법

외국의 경우에는 원자로 발전소용으로 사용되는 XLPE(Cross-linked polyethylene) 케이블의 열화진단을 위해 절연층, 반도체층 케이블의 열화가 사고를 인기는 모터, 변율기, 브레이크 등의 구조적 특성분석까지 수행하고 있다. 케이블 상태 변수는 핵적 방법, 물리적 방법 및 전기적 방법으로 구분되며 표 3은 국내에서 이용되고 있는 케이블 상태 감시 방법을 나타낸다.

그림 4. Arrhenus plot

4. 결론

원자로 발전소 격납용기에 사용되는 케이블의 상태는 사용하는 위치와 사용양, 절연층 등에 따라 많은 변화가 있으며 방사선 조사장 등의 강소에 따라 많은 차이를 보이고 있다. 현재 국내외의 케이블 상태 감시 방법은 대부분이 국외의 방법을 개선하여 사용하고 있다. 국내외 연구의 원자로 발전소에서 사용되는 케이블의 사용 환경 및 조건 등에 대하여 많은 방법들이 국내외의 실적에 맞는 것이라. 따라서 국내의 실적에 적합한 원자로 케이블의 노후진단기술 및 열화진단시스템 개발을 개발하여야 한다. 앞으로 각종 사례연구 및 국내외의 현황과 연구동향을 파악하여 규제의 관리에서 가장 적합한 방법을 도출하고자 한다. 또한 해외의 안전규제 요건과 비교 분석을 통해 케이블 상태 감시 조사 연구를 지속하여 국내외의 실적에 가장 적합한 케이블 상태 감시 방법을 개발하였다. [참고 문헌]


![표 3. 케이블 상태 감시방법](image-url)