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ABSTRACT

It has been noted that the low frequency absorption coefficient of a porous sample placed in a
standing wave tube is affected by the nature of the sample’s edge constraint. The edge constraint
has the effect of stiffening the solid phase of the sample, which itself can be strongly coupled to the
material’s fluid phase, and hence the incident sound field, by viscous means at low frequencies. In
recent work it has also been shown that such a circumferential constraint causes the low frequency
transmission loss of a layer of fibrous material to approach a finite low frequency limit that is
proportional to the flow resistance of the layer and which is substantially higher than that of an
unconstrained sample of the same material. However, it was also found that the benefit of the
circumferential edge constraint was reduced in a transitional frequency range by a shearing
resonance of the sample. Here it will be shown that the effect of that resonance can be mitigated or
eliminated by adding additional axial and radial constraints running through the sample. It will
also be shown that the constraint effect can be modeled closely by using a finite element procedure

based on the Biot poroelastic theory. Implications for low frequency barrier design are also

discussed.

1. INTRODUCTION

Recently, a transfer matrix, standing wave
tube method for estimating the complex wave
number and characteristic impedance of porous
materials has been developed [1]. By using a
similar procedure it was possible to measure
the transmission loss of aviation-grade glass
fiber samples (2.9 cm in diameter and 7.5 cm
in depth) from 100 Hz to 6400 Hz. The
transmission losses of these materials
consistently showed resonance dips in the 400
Hz to 500 Hz range: it was suggested that the
dips resulted from a shearing resonance of the
sample mass against the edge constraint of the
samples when placed in the standing wave tube.
It has been verified that the circumferential
edge-constraint effects described above can be
successfully modeled by using an axi-
symmetric finite element procedure [2] based
on the Biot poroelastic theory [3]. The focus
of the present work was on the enhancement of
the increased transmission loss that was found

to occur at frequencies below the shearing
resonance. That is, the transmission loss was
enhanced at low frequencies due to sample
edge constraint. The most important findings
of the present work are that: the shearing
resonance dips can be shifted to higher
frequencies; the impact of the resonance dips
can be reduced; and hence the transmission
loss of a fibrous layer can be increased at low
frequencies by applying a variety of internal
axial and radial constraints within the sample.

2. EXPERIMENTAL APPARATUS

In the work described here, a 10 cm inner
diameter, low frequency standing wave tube
was used to measure the anechoic transmission
loss and surface normal impedance of the
various samples [1]. The tube was modified
by the addition of four, custom-made sections
(see Fig. 1). One of the additional tube
sections was drilled to accommodate three
microphone holders. In the present work, the
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two microphone locations used in both the up-
and downstream tube sections were separated
by 5 cm; measurement position 2 was located
35 cm from the front surface of the sample,
and measurement position 3 was located 25 cm
from the rear surface of the sample.

The material considered here was aviation-
grade glass fiber. The properties of this
material, inferred by a combination of direct
measurement and model matching, are listed in
Table 1. In all cases, the diameter of the
samples was 10 ¢m and the sample depth was
7.5 cm (each sample comprising three, 2.5 cm
thick layers). Here, different types of internal
constraints were applied by using thin
plexiglasss sheets (7.5 cm in length) running in
the axial and radial directions through the
samples. In particular, the samples were either
constrained along a plane (see Fig. 3 (a)) or
constrained within a cross (see Fig. 4 (a)). In
the reference case, the sample was constrained
only around its circumference (see Fig. 2 (a)).
Note that the samples were constrained only by
the effect of friction: i.e., no adhesives were
used. The glass fiber samples were cut
appropriately and then inserted carefully into
the plexiglass frame within the sample holder.
The anechoic termination in the large tube
comprised a 60 cm depth of 3M Thinsulate
material. The absorption coefficient of this
termination was greater than 0.93 from 50 Hz
to 1600 Hz. The anechoic termination was
effective owing both to its length and because
the absorbing material was packed loosely near
the termination’s front surface, and was more
densely packed towards it downstream end.

The frequency span of the measurement
was 1600 Hz and the frequency resolution was
2 Hz. In addition, a microphone switching
calibration procedure that was based on the
ASTM E 1050-90 two-microphone standing
wave tube standard was used [4].

3. FINITE ELEMENT MODELS

The acoustical performance of the
cylindrical glass fiber samples was modeled by
using the code COMET/Acoustics~SAFE
(supplied by Automated Analysis Corporation
of Ann Arbor, Michigan). This software is
based on a finite element implementation of
the Biot theory for wave propagation in elastic

porous materials {3]. More specifically, it is
based on the version of the Biot theory
described by Bolton et al. [5].

Here, the model comprised 540 poroelastic
elements and 2160 air elements for a total of
2700 elements having 3146 nodes. All of the
elements in the finite element model were
three-dimensional acoustical fluid elements
(ANSYS Fluid 30). This element is normally
used for modeling the fluid medium in sound
propagation problems. Each element had eight
corner nodes. The parameters that were used
to specify the properties of the poroelastic
medium were: flow resistivity, tortuosity,
porosity, bulk density of the expanded material,
bulk in wvacuo Young’s modulus and
corresponding loss factor, and Poisson’s ratio.

In the air regions, the radial particle
velocity was set to zero at the outer duct radius.
In the poroelastic region, both the fluid and
solid phase radial displacements were set to
zero at the outer radius. The sample edge
constraint was modeled by requiring that the
axial solid phase velocity be zero along the
surface of contact between the glass fiber and
the duct wall. Similarly the fluid and solid
phase normal displacements, and solid phase
axial displacement, were set to zero on the
planes of contact between the plexiglass and
the glass fiber material. The lengths of the air
spaces in the upstream and downstream
sections were 15 cm each. The transfer matrix
method was used to calculate the anechoic
transmission loss and surface normal
impedance of each “sample.” Measurement
position 2 was 10 cm from the front surface of
sample and measurement position 1 was placed
at the upstream end of the tube where a plane
piston (having a unit axial velocity) was
assumed to be located. Measurement position
3 was 10 cm from the rear surface of sample
and measurement position 4 was placed at the
anechoic termination. The right hand end of
the air space was terminated by a pgc
impedance (i.e., a normalized impedance of
unity), thus creating an anechoic termination.
To make the FEM program run efficiently, the
total number of elements should be small, and
so the size of the elements was made
equivalent to a quarter wavelength (of the
lowest wave speed within the porous medium)
at the highest frequency of interest.



4. RESULTS AND DISCUSSION

It was found that the major effect of the
edge-constraint was to stiffen the sample at
low frequencies: i.e., the reactances shown in
Figs. 2 (b) to 4 (b) conform more closely to the
constrained than the unconstrained predictions.
It may be seen that the edge constraint
transforms the low frequency behavior of the
material from mass-like (i.e, a positive
reactance) to spring-like (i.e., a negative
reactance). The spring-like effect of the edge
constraint also causes the incident sound field
to experience increased resistance at low
frequencies compared to the unconstrained
case (when the material is free to move with
the sound field). This effect is responsible for
the increased low frequency resistance of the
constrained case when compared to the
unconstrained case.

The locations of the transmission loss
resonance dips (at which the first axial
shearing mode occurs) were well-predicted in
the FEM results: see Figs. 2 (a) to 4 (a). The
measured and predicted transmission loss
results for the various constrained cases are
shown together in Fig. 5. Note that the
resonance dips shift to a progressively higher
frequency as the degree of internal constraint is
increased: in addition, the cross constraint
essentially eliminates the resonance dip.

It was found that the low frequency limit of
the transmission loss of the constrained
samples was controlled by the material’s flow
resistivity as in the case of a rigid porous
material: see Fig. 6. When the material has a
relatively high flow resistivity, as in the present
case, the transmission loss in the flow
resistivity-controlled, low frequency region
can be well in excess of that predicted on the
basis of the material’s mass per unit area. It is
possible that this effect can be used to enhance
the low frequency transmission loss of lined
barriers if the linings are divided into small
constrained segments as considered here. Thus
the current findings have practical implications

for the design of low frequency noise control
barriers.

For example, the mnormal incidence
transmission loss of a double panel system
lined with 7.5 cm deep glass fiber materials for
both internally constrained and unconstrained
cases are shown in Fig. 7. Here, the thickness
of the aluminum panels (p=2700 Kg/m®) was
0.762 mm and the air gap between the panels
and lining on both the incident and transmitted
sides was 1 cm. Here, the “constrained”
transmission loss was based on the use of
transfer matrix elements measured using a
small tube (2.9 cm diameter, edge-constrained
samples). Those results are compared with the
unconstrained transmission loss calculated for
the unbonded-unbonded case [5]. These
results show that the transmission loss of lined
panel systems can be substantially increased at
low frequencies (below 1000 Hz) by applying
constraints within the lining material.
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Density Flow Resistivity Young's Poisson's | Loss
|Kg/m] | Porosity | Tortuosity | [MKS Rayls/m] | Modulus [Pa} ratio factor
Sample B 9.61 0.99 1.1 40000 8250 0.45 0.5

Table 1. Material properties of glass fiber material.
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Figure 1. Experimental setup for low frequency measurements (10 cm inner diameter).
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Figure 2 (a). Transmission loss of sample

Figure 2 (b). Surface normal impedance
B constrained around edge.

of sample B constrained
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Figure 3 (a). Transmission loss of sample
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Figure 4 (a). Transmission loss of sample

B constrained on cross.
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Figure 3 (b). Surface normal
impedance of sample B

constrained along plane.
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Figure 4 (b). Surface normal
impedance of sample B

constrained on cross.
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Figure 5 (a). Measured transmission loss.
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Figure 6. Effect of flow resistivity on TL
for constrained cross case.
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Figure 5 (b). Predicted transmission
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Figure 7. Transmission loss of double
panel system lined with glass
fiber for constrained case and

unconstrained case.



