Statistical Properties of Random Sparse Arrays with Application to Array Design

어레이 설계 응용을 위한 랜덤어레이의 통계적 성질

  • Published : 2000.06.22

Abstract

Theoretical models that can be used to predict the range of main lobe widths and the probability distribution of the peak sidelobe levels of two-dimensionally sparse arrays are presented here. The arrays are considered to comprise microphones that are randomly positioned on a segmented grid of a given size. First, approximate expressions for the expected squared magnitude of the aperture smoothing function and the variance of the squared magnitude of the aperture smoothing function about this mean are formulated for the random arrays considered in the present study. By using the variance function, the mean value and the lower end of the range i.e., the first I percent of the mainlobe distribution can be predicted with reasonable accuracy. To predict the probability distribution of the peak sidelobe levels, distributions of levels are modeled by a Weibull distribution at each peak in the sidelobe region of the expected squared magnitude of the aperture smoothing function. The two parameters of the Weibull distribution are estimated from the means and variances of the levels at the corresponding locations. Next, the probability distribution of the peak sidelobe levels are assumed to be determined by a procedure in which the peak sidelobe level is determined as the maximum among a finite number of independent random sidelobe levels. It is found that the model obtained from the above approach predicts the probability density function of the peak sidelobe level distribution reasonably well for the various combinations of two different numbers of microphones and grid sizes tested in the present study. The application of these models to the design of random, sparse arrays having specified performance levels is also discussed.

Keywords