A syudy on electrochemical charcteristic of $Li_{1-x}Mn_{2}O_{4}$(0$\leq$x$\leq$0.075)

$Li_{1-x}Mn_{2}O_{4}$(0$\leq$x$\leq$0.075)의 전기화학적 특성연구

  • Published : 2000.07.01

Abstract

The spinel L $i_{1-x}$ M $n_2$ $O_4$has been synthesized by the solid-state reaction. L $i_{l-x}$M $n_2$ $O_4$which includes a mixture of LiOH . $H_2O$ and Mn $O_2$prepared by preliminary heating at 35$0^{\circ}C$ for 12hr. L $i_{l-x}$M $n_2$ $O_4$fired at temperature range from 75$0^{\circ}C$ for 48hr. The structure and the electrochemical characteristics of spinel to L $i_{1-x}$ M $n_2$ $O_4$which is fabricated by changing sintering condition from starting materials are investigated. The cyclic voltammetric measurement was performed using 3 electrode cells. Electrode specific capacity and cycle life behavior were tested in a 3.0~4.2V range at a constant current density of 0.45mA/c $m^2$. To improve the cycle performance of spinel L $i_{l-x}$M $n_2$ $O_4$as the cathode of 4V class lithium secondary batteries, spinel phases L $i_{1-x}$ M $n_2$ $O_4$were Prepared at various lithium. The results showed that discharge capacity of L $i_{l-x}$M $n_2$ $O_4$varied at lithium quantity decrease with increasing lithium add quantity. The discharge capacities of L $i_{0.925}$M $n_2$ $O_4$and LiM $n_2$ $O_4$revealed 108 and 117mAh/g, respectively.spectively.y.

Keywords