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Abstract

This study suggests integrated neural network models for interest rate forecasting using change-point
detection, classifiers, and classification functions based on structural change. The proposed model is
composed of three phases with two-staged learning. The first phase is to detect successive and appropriate
structural changes in interest rate dataset. The second phase is to forecast change-point group with
classifiers (discriminant analysis, logistic regression, and backpropagation neural networks) and their
combined classification functions. The final phase is to forecast the interest rate with backpropagation
neural networks. We propose some classification functions to overcome the problems of two-staged
learning that cannot measure the performance of the first learning. Subsequently, we compare the
structured models with a neural network model alone and, in addition, determine which of classifiers and
classification functions can perform better. This article then examines the predictability of the proposed

classification functions for interest rate forecasting using structural change.

Keywords: Backpropagation Neural Networks, Structural Change, Change-Point Detection,

Pettitt Test, Discriminant analysis, Logistic Regression

1. Introduction models have been beneficial for understanding market

: . . behavior. This is especially when the objective of
Interest rate forecasting has clear ramifications for o1 s especially true n the objects

. - the model is merely to describe and summarize the
cash management in any enterprise. Its movement also ’

affects financing decisions such as capital budgeting
and strategic investment. The prediction of interest rate
is critical for managing risk in an investment portfolio
as well as securing finance for corporate investment.
Over the past several decades, statistical techniques and
traditional software have been used extensively to

model financial markets. Such statistical and software

characteristics of a market rather than forecast its
trajectory. For the task of interest rate forecasting,
however, numerous studies in the past have
underscored the inadequacy of statistical techniques
and simulations based on traditional procedures.
Currently, several studies have demonstrated that

artificial intelligence approaches, such as fuzzy theory
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(Ju et al,, 1997) and neural networks (Deboeck and
Cader, 1994; Hong and Han, 1996), can be alternative
methodologies for chaotic interest rate data (Larrain,
1991; Peter, 1991; Jaditz and Sayers, 1995). Previous
work in the interest rate forecasting has tended to
emphasize statistical techniques and artificial intelligent
(AD) techniques in isolation over the past decades.
However, an integrated approach, which makes full use
of statistical approaches and Al techniques, offers the
promise of increasing performance over each method
alone (Chatfield, 1993). This article explores the ways
in which such technologies may be combined
synergistically, and illustrates the approach through the
use of DA, LR and BPN as a data mining classifier. Up
to date, it has been proposed that the integrated neural
network model combining two or more models have a
potential to achieve a high predictive performance in
interest rate forecasting (Kim and Kim, 1996; Kim and
Noh, 1997).

The movement of Interest rate is more fluctuated
sensitively by government’s monetary policy than other
financial data (Gordon and Leeper, 1994; Strongin,
1995; Bernanke and Mihov, 1995; Christiano et al.,
1996; Leeper et al, 1996; Bagliano and Favero).
Especially, banks play a very important role in
determining the supply of money: Much regulation of
these financial intermediaries is intended to improve its
control. One crucial regulation is reserve requirements,
which make it obligatory for all depository institutions
to keep a certain fraction of their deposits in accounts
with the Federal Reserve System, the central bank in
the United States (Mishkin, 1993). It is supposed that
government take an intentional action to control the
currency flow which has direct influence upon intercst
rate. Therefore, we can conjecture that the movement of
interest rate has a series of change points occurred by
the planned monetary policy of govermment.

To reflect these inherent characteristics of interest
rate, Oh and Han (2000) propose a structured model
threc phases as follows: The first phase is to detect
successive and appropriate structural changes in interest

rate dataset. The sccond phase is to forecast change-

point group with classifiers. The final phase is to
forecast the interest rate with BPN. This model has a
disadvantage not to evaluate whether the change-point
group detection is appropriately established in the
second phase. In order to overcome these problems, we
suggest the classification functions to integrate
discriminant analysis (DA), logistic regression (LR),
(BPN).
Subsequently, we determine which of three classifiers

(DA, LR and BPN) can perform better and furthermore

and backpropagation neural networks

examine the predictability of the proposed
classification functions.

The case study performed in this articic consists of
the Treasury bill rate of 3 month’s maturity in the U.S.
from Jan., 1961 to May, 1999. Input variable selection
is based on the causal model of interest rate presented
by the econometricians. To explore the predictability,
we divided the interest data into the training data over
one period and the testing data over the other period.
The predictability of interest rate is examined using the
metrics of the root mean squared error (RMSE), the
mean absolute error (MAE) and the mean absolute
percentage error (MAPE).

We review the development of change-point
detection and its application to the financial economics
in Section 2. Section 3 describes the proposed
integrated neural network model details through the
various data mining classifiers. Section 4 reports the

processes and the results of applied study. Finally, the

concluding remarks are presented in Section 5.

2. Change-Point Problems

2.1. Structural Change in Financial Economics

The detection and cstimation of a structural or
parametric change in forecasting is an important and
difficult problem. In particular, financial analysts and
econometricians have frequently used piccewise-linear
models which also include change-point models. They
;'xre known as models with structural breaks in the
economics litcrature. In these models, the parameters
are assumed to shift - typically once -~ during a fixed

sample period and the goal is to estimate the two sets of
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parameters as well as the change point or structural
break.

In order to detect the structural change, change-
point detection methods have been applied to
macroeconomic time series. Rappoport and Reichlin
(1989) and Perron (1989, 1990) conduct the first study
in this field. From then on, several statistics have been
developed which work well in a change-point
framework, all of which are considered in the context
of breaking the trend variables (Banerjee et al., 1992;
Christiano, 1992; Zivot and Andrews, 1992; Perron,
1995; Vogelsang and Perron, 1995). In those cases
where only a shift in the mean is present, the statistics
proposed in the papers of Perron (1990) or Perron and
Vogelsang (1992) stand out.

In spite of the significant advances by these works,
we should bear in mind that some variables do mnot
show just one change point. Rather, it is common for
them to exhibit the presence of multiple change points.
Thus, it seems advisable to introduce a large number of
change points in the specifications of the models that
allow us to obtain the abovementioned statistics. For
example, Lumsdaine and Papell (1997) have considered
the presence of two or more change points in trend
variables. Based on this fact, we also assume the
Treasury bill rates have two or morc change points in
our research model.

Up to date, there are few artificial intelligence
models for financial applications to represent the
change-point detcction problems. Most of the previous
research has a focus on the finding of unknown change
points for the past, not to forecast for the future
(Wolkenhauer and Edmunds, 1997; Li and Yu, 1999).
Our model finds change points in the learning phase
and forecasts change points in the testing phase. It is
demonstrated that the introduction of change points to
our model will make the predictability of interest rate
greatly improve. In this article, a series of change
points will be detected by Pettitt test, a nonparametric
change-point detection method since nonparametric
statistical property is a suitable match for a neural

network model that is a kind of nonparametric method

(White, 1992).

2.2. The Pettitt Test

In this study, a series of change points will be
detected by the Pettitt test (Pettitt, 1979, 1980a), a
nonparametric change-point detection method, since
nonparametric statistical property is a suitable match
for a neural network model that is a kind of
nonparametric method (White, 1992). In this point, the
introduction of the Pettitt test is fairly appropriate for
the analysis of chaotic time series data. The Pettitt test
is explained as follows.

Consider a sequence of random variables
X1, X5, ..., Xy, then the sequence is said to have a
change-point at 7 if X, for t=1,2,...,7 have a
common distribution function Fj(x) and X, for
t=r+1,r+2,...,7 have a common distribution
Fy(x), and Fj(x)= F,(x). We consider the problem
of testing the null

hypothesis of no-change,

Hy:z=T, against the alternative hypothesis of
change, H,:1<r<T, using a non-parametric
statistic.

An appealing non-parametric test to detect a
change would be to use a version of the Mann-Whitney
two-sample test. A Mann-Whitney type statistic has
remarkably stable distribution and provides a robust
test of the change point resistant to outliers (Pettitt,
1980b). Let

Dy =sgn(X; - X;) nH
where sgn(x)=1 if x>0, 0 if x=0, -1 if
x < 0, then consider

t T
Uir = Z ZDij @)
=1 fa=r+1
The statistic U, r is equivalent to a Mann-Whitney
statistic for testing that the two samples X,,..., X,
and X,,,..., X7 come from the same population.

The statistic U, r is then considered for values of ¢

with 1<t < T . For the test of Hg: no change against
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H 4 : change, we propose the use of the statistic

Ky =lr;2)2c”|U,,Tl. (3)

The limiting distribution of Kr is Pr=

2exp{- 6k (T2 + T3)}for T—m.
In the time sequence dataset, the Pettitt test detects
a possible change point in which the structural change

is occurred. Once the structural change is detected

through the test, the dataset is divided into two intervals.

The intervals before and after the change point form
homogeneous groups which take heterogeneous
characteristics from each other. This process becomes a
fundamental part of the binary segmentation method

explained in Section 3.

3. Description of the Proposed Model
3.1. The Integrated Neural Network Model

Classifiers, change-point detection method and
neural network learning methods have been integrated
to forecast the Treasury bill rate of 3 month’s maturity
in the U.S. The advantages of combining multiple
techmiques to yield synergism for discovery and
prediction have been widely rccognized (Gottman,
1981; Kaufman et al., 1991). This section provides the
architecture and the characleristics of our research
model to include the change-point detection and BPN,
The proposed model is composed of three phases based

on the Pettitt test as follows:

Phase 1: Constructing homogeneous groups

Pettitt test is a method to find a change-point in
longitudinal data (Pettitt, 1979). It is known that
interest ratc at time fare more important than
fundamental economic variables in determining interest
rate at time ¢+1 (Larrain, 1991). Thus, we apply
Pettitt test to Treasury bill rates at time ¢ to gencrate a
forecast for 7+1 in the leaning phase. The Pcttitt test
mentioned in Section 2 is method for finding just one
change point in time series data. Based on this method,
multiple change points can be obtained under the

binary segmentation method (Vostrikova, 1981). With

Hy as in Section 2, under the alternative hypothesis

we now assume that there are R changes in the
parameters, where R is a known integer. The
alternative can be formulated as

HE) : there are integers 1 < &y <k, <... < kp <n
such that ﬂl == Hkl = ‘9kl+1 =

=Gy * g1 =

= O, # Oy =

= ¢, for the parameter &'s.

We note that the test statistics under the null
. . . , . (R)
hypothesis will remain consistent against H " as

well, despite the fact that they were derived under the
agsumption that R =1. Without the loss of generality,
we can deduce that the tests mentioned in Section 2 are

extended to the form for “no change” against the “ R
changes” alternative A ;R) .

Vostrikova (1981) suggested a binary segmentation

method as follows. First, use the change-point detection
test. If H, is rejected, the find 121 that is the time
where Equation (3) is satisfied. Next divide the random

sample into two subsamples {Xi:lgiglzl} and

X, :121 <i<n}, and test both subsamples for further

changes. One continues this segmentation procedure
until no subsarnples contain further change points. If

exactly R changes are found, then one rejects H, in
favorof H,.

This process plays a role of clustering that
constructs groups as well as maintains the time
sequence. In this point, Phase 1 is distinguished from
other clustering methods such as the k-means nearest
neighbor method and the hicrarchical clusiering method.
They classify data samples by the Euclidean distance

betwceen cases without considering time sequence.

Phase 2: Group forecasting with classifiers

The significant intervals by Phase 1 arc grouped to
detect the regularities hidden in them and to represent
the homogencous characteristics of them. Such groups
represent a sct of meaningful trends encompassing the

significant intervals. Since those trends help to find
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regularity among the related output values more clearly,
the neural network model can have a better ability of
generalization for the unknown data. This is indeed a
very useful point for sample design. In general, the
error for forecasting may be reduced by making the
subsampling units within groups homogeneous and the
variation between groups heterogencous (Cochran,
1977). After Phase 1 detects the appropriate groups
hidden in the significant intervals, various classifiers
(DA, LR and BPN) are applied and integrated to the

input data samples at lime ¢ with group outputs for
¢t +1. In this sense, Phase 2 is a modcl that is trained to

find an appropriate group for each given sample.

Phase 3: Forecasting the output with BPN

Phase 3 is built by applying the BPN model to
each group. Phase 3 is a mapping function between the
input sample and corresponding desired output (i.e.
Treasury bill rate). Once Phase 3 is built, then the

sample can be used to forecast the Treasury bill rate.

3.2. Classification Models

In Phase 2, we apply several classification models
(DA, LR, and BPN) to interest rate forecasting. Bascd
on these classifiers, we suggest new classification
functions to integrate them. In this study, 3-month T-
bills are assumed to be just one change-point. For
multiple change-points, the proposed classification

functions can be adjusted without the loss of generality.

3.2.1. Discussion of DA, LR, and BPN

The neural network methodology has been applied
cxtensively to solve practical problems following the
publication of the backpropagation algorithm for the
multi-layer  perceptron (Rumelhart, 1986). The
algorithm was developed for the perceptron model, a
simple structure to simulate a ncuron (Rosenblatt,
1957). The backpropagation algorithm is based on
artificial neural networks, where the neuron input path

(/) has asignal on it (X;) and the strength of the path

is characterized by a weight (w;) for &k input

variables. The neuron is modeled as summing the path
weight times the input signal over all paths and adding
the node bias (®). The output (¥Y) is usually a
sigmoid shaped logistic function that is expressed as
follows:

1
k

14 exp) —Zw,-X;+G)

i=1

Y=7(X)= )

Note that this S-shaped function reduces the effect of
extreme input variables on the performance of the
network. Today, BPN is the most widely used neural
networks algorithm suitable for nonlinear data analysis
in science, engineering, finance and other fields
(Patterson, 1996). Thus, we introduce BPN to our
model as a classification tool and a forecasting tool.
Discriminant analysis is wused to classify
individuals into one of two or more alternative groups
on the basis of a set of measurements. Theoretically,
this method is based on the Figher’s lincar discriminant
function by maximizing the ratio of between-groups
and within-groups variances as follows (Fisher, 1936).

The linear discriminant function is as follows:
D=py+ AXy + BoXy+-+ B Xy (5)
Bo, Bs o
and Xy, X,,

where D is a discriminant score,

estimated coefficients,

e Py are

..., X} are independent variables. The probability that

a case with a discriminant score of D belongs to
group [ among g groups is estimated by the
following cquation

P(D|G;)P(G;)

z
D PDIG)HP(G))

i=1

PGy | D)=

(©)

The prior probability, represented by P(G;), is an
estimate of the hkelihood that a case belongs to a
particular group. The groups are known to be distinct,
and each individual belongs to one of them. In addition,
DA can be used to identify which variables contribute
to making the classification (McLachlan, 1992; Hair, et
al.,, 1995). This study applies DA to forecast the

change-point group in the second stage.
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Logistic regression can be used whenever an
observation is to be classified into one of two
populations. Thus, it is an alternative to the DA. For a
binary response Y and a quantitative explanatory

variable X, let #(X) denote the “success”

probability when X takes value x . This probability
is the parameter for the binomial distribution. The
logistic regression model has linear form as like

equation (4) for the logit transformation log[:r/ (-]
of 7, symbolized by logit () :

. _ z(X)
logit[z(X)] = log‘:———l — ﬂ(X)]
=fo+ BXi+ BXot o+ B Xy

where Sy, £, fa2,.... O are estimated coefficients,

@

and X,,X,,...,X; are independent variables.
Formula (7) implies that 7(x) increases or decreases
as an S-shaped function of x. This shows that LR
represents nonlinear characteristic based on the
statistical concept. Therefore, LR can be regarded as a
mixed model to take both linear attribute of DA and
nonlinear attribute of BPN.

The success probability can be directly obtained

from the formula (7) using the exponential function
exp(x) = e, in the form

2(X) = exp(fp + AKX+ + B Xe)
1+ exp(fy + A Xy + o+ FiXy)

The Fisher's linear discriminant function gives rise to

®

the logistic posterior probability when the multivariate
normal model is assumed. LR represents an alternative
method of classification when the multivariate normal
model is not justified (Agresti, 1990, 1995; Christensen,
1997). In general, DA estimators are superior to LR
estimators for the classification problems if the
populations are normal with identical covariance
matrices. Under non-normality, LR provides the
improvement of prediction performance with maximum
likelihood
problems (Press and Wilson, 1978).

estimators for solving classification

3.2.2. Proposed Classification Functions

Predicted values of DA, LR, and BPN are used as
input in order to find the optimal predicted group. We
suggest three classification functions to combine MDA,
LR, and BPN: (1) the voting method (VM) for
predicted group of three classifiers, (2) the arithmetic
mean-assisted methods (AM) for predicted probability
of three classifiers, and (3) the geometric mean-assisted
methods (GM) for predicted probability of three

classifiers, which are defined as follows.

450 g[P«;.- D)+ glex)]

where g is the threshold function which generates 0
or 1 for ith observation.

b, LX)+ PG D)+ ) (1)

GM; =3 f(X;) P(G; | D) x(X)) an
Finally, the optimal predicted group for each method is
obtained by the threshold function F(X) which is

defined as follows:

0, VM, (or AM; or GM;)<0.5
F(X;)= (12)
1, VM;(or AM;orGM;)=0.5
4. Empirical Results

The input variables used in this study are M2,
consumer price index, expected real inflation rates and
industrial production index. They are used in both
Phase 2 and Phase 3. The lists of variables used in this
study are surmmarized in Table 1. They are those which
were found significant in interest rates forecasting by
previous study (Oh and Han, 2000). To obtain
stationary and thereby facilitate forecast, the input data
were transformed by a logarithm and a difference
operation. Moreover, the resulting variables were
standardized to eliminate the effects of units.

The training phase included observations from
January 1961 to Decemnber 1986 while the testing phase
runs from January 1987 to May 1999. The intcrest rate
t‘:lata are presented in Figure 1. Figure 1 shows that the
movement of interest rates is highly fluctuated during

the last forty years.
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Table . Description of Variables.

Variable Description Attribute
Name
. Treasury Bill with
TBILL 3 month’s maturity Output
M2 Money Stock Input
CP1 Consumer Price Index Input
ERIR Expected Real Interest rate Input
1PI Industrial Production Index Input

Figure 1. Yield of the U.S. Treasury bills with a
maturity of 3 months from Jan. 1961 to May 1999

The study employed seven neural network models.
One maodel, labeled PureNN, involve input variables at
time ¢ to penerate a forecast for ¢+1. The input
variable is M2, CPI, ERIR and IPI. The second type has
two-step forecasting models which consist of three
phases mentioned in section 3. The first step is Phase 2
that forecasts the change-point group while the next
step is Phase 3 that forecasts the output. Table 2 shows
classifiers and classification functions used in the
proposed model. For validation, seven leaming models

were also cornpared.

Table 2. Models and their associated classifiers and
classification function for the U.S. Treasury bill rate
forecasting.

Classifier and classification function

Model used in the model
PureNN None

LRNN Logistic regression

BPNN Backpropagation Neural Network
DANN Discriminant analysis
VMNN Formula (9) by voting method

AMNN  Formula (10) based on Arithmetic Mean
GMNN Formula (11) based on Geometric Mean

The Pettitt test is applied to the training set of

interest rates. It is assumed that there exist two
structural groups in 3-month T-bills dataset in this
study. The first interval runs from January 1961 to
January 1973 while the second imterval is from
February 1973 to December 1986. Thus, we obtain two
significant intervals as like the result of Table 3. Table
3 also presents descriptive statistics including the mean
and the varjance. Group 1 is the 'stable interval that has
low variance. Group 2 is more fluctuated intervals than
Group ! in term of the variance. We conjecture that two

groups have dissimilar attributes from each other.

Table 3.
Period and descriptive statistics of groups for the
learning phase, Jan. 1961 ~ Dec. 1986

Group 1 Group 2
Periods Jan., 1961 ~ Feb., 1973 ~
Jan., 1973 Dec., 1986
Minimum 2.24 4.35
Maximum 7.87 16.3
Range 5.63 11.95
Mean 4.44 8.31
Variance 1.77 7.90
Standard .
Deviation 1.35 2.82
Skewness 0.63 0.91
Kurtosis -0.14 0.17

Numerical values for the performance metrics by
predictive model are given in Table 4. Where the
forecasts are not statistically independent and not
always normally distributed, the comparison using the
forecast’s APEs iz commmonly used (Carbone and
Armstrong, 1982). According to MAPE, therefore, the
outcomes indicate that the models with classifiers and
classification functions are superior to the pure BPN
model. In particular, GMNN is the best model among

all of the models.

Table 4. Performance results in the case of US Treasury
bill rate forecasting based on RMSE, MAE and MAPE

Model RMSE MAE MAPE (%)
PureNN 0.3775 0.3178 6.493
DANN 0.4346 0.3289 6.066
LRNN 0.4044 0.3098 5.744
BPNN 0.3548 0.3024 5.615
VMNN 0.3992 0.3036 5.679
AMNN 0.3465 0.2696 5326
GMNN 0.3242 0.2449 4.741
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Our approach to integration involves a
multistrategy technique which may be called two-
staged learning. The integrated models using classifiers
and classification functions provide the good results
with the two-staged learning process. Especially, the
models with the proposed classification functions
perform well in this study. In two-staged learning, the
forecast from the superior method is selected on a case-
by-case basis to determine the output of overall model.
In other words, the second learning (BPN in this study)
serves as a metalevel process to determine which of
three elementary modules (LR, BPN, DA, and their
combined classification functions in this study) perform
better. In this point, GM is a good metalevel predictive
method. Thus, we will choose geometric mean-assisted
method as the elementary module for real application
of model.

The pairwise t-test is used to examine whether
there exist the differences in the predicted values of
models according to the absolute percentage error
(APE), where is highly robust (Armstrong and Collopy,
1992; Makridakis, 1993). Iman and Conover (1983)
demonstrate that this test is robust to the distribution of
the data, to nonhomogeneity of variances, and to
statistical dependence, where sample sizes are
reasonably large. Table 5 shows t-values when the
prediction accuracies of the left-vertical methods are
compared with those for the right-horizontal methods.
Mostly, classification function-assisted methods
perform significantly better than the other models at
1% or 10% significant level. Specially, the geometric
mean-assisted method is demonstrated to obtain the
best improved performance.

The integrated neural network models using
structural change turn out to have a high potential in
interest rate forecasting. This is attributable to the fact
that it categorizes the input data samples into
homogeneous group and extracts regularities from each
homogeneous group. Therefore, the proposed network
models using structural change can cope with the noise
or imregularities more efficiently than the pure BPN

model. In addition, geometric mean-assisted mode! and

arithmetic mean-assisted model perform very well as a

tool in interest rate forecasting.

Table 5. Pairwise t-tests for the differences in residuals
for US interest rate prediction based on the absolute
percentage error (APE).

Model DA LR VM BP AM GM

NN NN NN NN NN NN
PureNN 0.81 1.56 1.59 1.79 334 542

* EFTT) Aok

DANN 4.14 4.1] 4.51 2.54 3.68
X 23 ETT] H ko EE 3 e

LRNN 067 164 170 317
* #okok

VMNN 1.18 124 276
kK

BPNN 1.06 2.66
ok

AMNN 2.61
wookk

#** Significant at 1%; ** Significant at 5%,
*Significant at 10%

5. Concluding Remarks

This article has suggested the intcgrated neural
network models in the intercst rate forccasting using
structural change. The basic concept of proposed model
is to obtain significant intervals by change-point
detection, to identify them as change-point groups, and
to involve them in interest rate forecasting. We propose
integrated neural network models which consist of
three phases. In the first phase, we conduct the
nonparametric statistical test for the change-point
detection to construct the homogeneous groups. In the
second phase, we apply several classifiers and
classification functions to forecast the change-point
group. In the final phasc, we apply BPN to forecast the
output.

The neural network models to represent structural
change perform significantly better than the pure BPN
model at a 1% or 10% significant level. Experimental
results showed that the proposed models outperform the
pure BPN model significantly, which implies the high
potential of involving the change-point detection in the
model. The geometric mean-assisted model and
a.rithmetic mean-assisted model performed very well as
classification functions. Our integrated neural network
models are demonstrated to be useful intclligent data

analysis methods with the concept of structural change.
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In conclusion, we have shown that the proposed models
improve the predictability of interest rate significantly.

The proposed models have the promising

possibility of improving the performance if further
studies are to focus on the decision of the optimal
number of change. In final phase of the model, other
intelligent approaches can be used to forecast the final
output besides BPN. In addition, the proposed models
may be applied to other chaotic time series data, such
as stock market prediction and exchange rate prediction.
By the extension of these points, future research is
expected to provide more improved neural network

models with superior performances.
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