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ABSTRACT: A TIN, Triangulated Irregular Network, based topographic modeling method and a dis-
tributed rainfall-runoff model using the topographic representation is presented. In the TIN based topo-
graphic representation, a watershed basin is modeled as a set of contiguous non-overlapping triangular
facet=: the watershed basin is subdivided according to streamlines to deal with water movement one-
dimensionally; and each partitioned catchment is approximated to a slope element having a quasi-three-
dimensional shape by using cubic spline functions. On an approximated slope element, water movement
is represented by combined surface-subsurface kinematic wave equations considering a change of slope
gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability
of s0il properties on runoff response are examined.

1 INTRODUCTION

The effect of topography on runoff characteristics is a major impact on hydrologic response, therefore to
develop a topographic representation method for natural landscapes and construct a distributed rainfall-
runoff model using the topographic representation are fundamental to improve the accuracy of flood
runoff prediction. There are three principal methods for representation of topography using a network
of elevation data, which are grid-based networks, contour-based networks, and Triangulated Irregular
Networks, or TINs (Moore et al., 1991). Grid-based networks are the most common form of Digital
Elevation Models (DEMs) used by many researchers for topographic modeling and analysis of a river
basin. When the networks are used for dynamic hydrologic modeling, some devices may be needed because
they cannot represent various shapes of mountainous slopes such as topographic convergence, divergence,
convex or concave. On the other hand, contour-based networks can deal with them appropriately. Moore
and Grayson (1991) developed TAPES-C which automatically partitions a catchment by streamlines, and
proposed a contour-based form of a distributed hydrologic model. However it might be suitable only for
a small scale catchment because of heavy data storage and much computational burden.

To overcome these faults, we proposed a method to model landscapes by using TIN-DEMs (Tachikawa
et al., 1994), and developed a distributed rainfall-runoff model based on TIN-DEMs (Tachikawa et al.,
1996). The system generates contiguous non-overlapping triangular facets each of which has only one
side through which water fows out. The structure of the TIN-DEMs made by the system allows us to
partition a catchment into slope elements according to streamlines and to treat water movement one-
dimensionally. Using the topographic modeling method, water movement is represented by combined
surface-subsurface kinematic wave equations considering a change of slope gradient and slope width, and
discharges from distributed slope elements are routed to a basin outlet through a channel network.

The proposed model is a physically based spatially distributed model which has advantages for the
study of basin change impacts. When we apply the model for solving an actual problem, how to evaluate
many spatially distributed model parameters becomes an important subject. One of the methods to cope
with the subject is to investigate the influence of spatial distributions of model parameters on rainfall-
runoff simulation results. A knowledge about what information of model parameters has dominant effects
on runoff simulation will be useful to determine model parameters. For this purpose, the model is applied
to the Shirasaka experimental basin (0.88km?2) in the Tokyo University Forest in Japan, and the effects
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Figure 1: Flow diagram showing the logical movement of data sets from topographic source data to the
runoff simulation system.

of spatial variability of soil properties on runoff characteristics are examined (Tachikawa et al., 1999).

This paper is organized as follows: in section 2 and 3, our distributed rainfall-runoff model is described,
and in section 4, the effects of spatial variability of soil properties on runoff characteristics are examined
by using the distributed rainfall-runoff model.

2 TIN-BASED TOPOGRAPHIC REPRESENTATION METHOD
2.1 TIN-DEMs date structure

Figure 1 shows the logical movement of data sets for the total system. Source data sets to make a TIN-
DEM representation are a grid-DEM and a Digital Line Graph(DLG) of river courses. By processing the
source data sets as described by Tachikawa et al. (1994, 1996), three data sets, a triangle network data
set, a vertex data set, and a channel network data set are produced for representing basin topography
by using TIN-DEM data structure. A sample triangle network and its data sets having TIN-DEM data
structure are illustrated in Figures 2 and 3.

A vertex data set contains x, y and z values of vertices which are indexed by a number given to specify
them. A triangle network data set contains properties of triangles. Each triangle is described by indices of
its three vertices, indices of three triangles which are adjacent to the triangle, three side-attribute-indices
which specify whether water flows into a side, along a side, or out of a side, three side-component-indices
which specify whether a side forms a part of valley, channel, slope, ridge, or boundary of a study area,
and unit normal vectors of the triangular facet. A value of a side-attribute-index is determined by the
cross product of the steepest descent vector of a triangle and the vector of a side of the triangle. A value
of a side-component-index is determined by side-attribute-indices of sides which are held in common by
adjacent triangles. If comumon sides of adjacent triangles are composed of an out-flow-side and an out-
flow-side, the sides represent a part of valley. Similarly, if composed of an in-flow-side and an in-flow-side,
the sides represent a part of ridge. All indices are stored in order of a counterclockwise direction.

For a logical representation of a channel network in a computer, a channel network is represented by
a set of links, which are sections of a channel network between an end point of a channel network and
a confluence or a confluence and another confluence. Each link is indexed by a number given to specify
it. A channel network data set is represented by an index of a link, an index of the downstream link,
indices of the upstream links, indices of vertices which form the link, and indices of triangles which are
in contact with the link.
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Figure 2: Schematic representation of a basin topography by using TIN-DEMs; (a) a sample triangle
network; (b) a sample channel network; (c) a sample triangular facet.
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Figure 3: Sample data sets of the TIN-DEMSs shown in Figure 2; (a) vertex data set; (b) channel network
data set; (c) triangle network data set.

2.2 Procedure for generating TIN-DEMs
The system to generate TIN-DEMs consists of following five procedures.
2.2.1 Preprocessing

A polygonal channel network (Figure 2(b)) is produced. It is made up of polygonal lines which are
composed of the intersections of mesh on a grid DEM and a DLG of river courses.

2.2.2 Trigngle generation

A triangle network data set is generated from a grid DEM and a polygonal channel network data set.
For a grid which has no channel segment in it, a new vertex is added in the center of the grid, and
it is subdivided into four triangles. Elevation of the added vertex is interpolated from the elevation of
four neighboring vertices. For a grid which has one channel segment in it, it is subdivided into several
triangles under a rule that a channel segment results in a side of a triangle. These cases are processed
automatically. In other cases, for example, when a grid has more than one channel segment in it, or a



grid has a confluence point, an upper end or a downstream end of a channel network in it, an operator
interactively subdivides the grid into several triangles using a mouse device with watching the result of
subdivision on a computer display.

2.2.8 QGetting rid of pits

A pit is a vertex whose surrounding vertices have higher elevation. If natural topography is so complicated
to represent it by using a grid DEM with a current grid spacing, sometimes false pitting occurs. The
program finds pits automatically and solves them by adding a new vertex and rearranging a triangle
network by using it. An operator interactively locates a new vertex having appropriate elevation at an
appropriate position and remakes a triangle network with referring a topographic map, using a mouse
device and watching the result on a computer display. The procedure continues until no false pit exists.

2.2.4 Joining discontinuous valley segments to channel network

In this stage of processing, valley segments which do not join a channel network exist in a TIN-DEM of a
watershed basin. This means that it cannot be decided whether triangles which contribute to these valley
segments are included in a study basin or not, because it is not determined whether these valley segments
are connected to a channel network or not. Therefore. a valley segment which is connected to a channel
network is searched. An algorithm for the procedure is as follows: a path of the steepest descent from
the lowest end of a valley segment is traced until it reaches to either a channel network or the boundary
of a study area. If the path reaches to a channel network, it is included in a channel network, and a
triangle network is updated under a rule that each segment which makes up the path results in a side of
a triangle.

225 Subdivigion of triangles

Most of the triangles have two sides through which water flows out. To identify source areas, these
triangles must be subdivided into triangles which have only one out-flow-side through which water flows
to an adjacent triangle. An algorithm for this procedure is as follows: a path of the steepest ascent
is traced from a vertex, and coordinates of an intersection on an opposite side is computed. If the
intersection is found on the opposite side, the intersection is stored in a vertex data set, and the adjacent
triangles which have the side in common are subdivided into four triangles by using the intersection. The
path is traced with subdividing triangles until it encounters a ridge segment or a boundary of a study
area. This subdivision procedure is applied to all the vertices included in a study area, but it is not
necessary to apply the procedure to new vertices added by this subdivision. Triangles which have two
sides through which water flows in are also subdivided so that each triangle has only one in-flow-side.
The procedure is the same as stated above except for tracing a path of the steepest descent from a vertex.

2.3 Watershed modeling by using TIN-DEMs

Once the TIN-DEM data structure is generated, it is easy to define triangular facets which are placed
at the upper part of an arbitrary triangle. Each triangle has only one adjacent triangle into which water
flows, therefore triangles which contribute to a particular triangle are recursively searched. A channel
network data set includes the information of triangles which are in contact with a channel network, so
by applying the procedure to the triangles stored in a channel network data set. the triangles which form
slope elements included in a study watershed can be automatically determined.

The system was applied to the Shirasaka experimental basin (0.88km?) in the Tokyo University Forest.
The source data sets are a grid-DEM of 20m spacing and a DLG of a channel network obtained from a
1:2.500 scale topographic map. Figure 4 shows the automatically delineated watershed for the Shirasaka
experimental basin. The number of slope elements which contribute to the channel network in the study
area was 4,796. Thick solid lines represent the polygonal channel network and thin lines show the valley
segments which ave connected to the channel network.

For each slope element which contributes to a channel network segment (Figure 5), following topo-



Figure 5: Extraction of a slope element which
contributes to a channel network segment,

Figure 4: TIN“'DEMS repJ.resentation of the Figure 6: Approximation of a slope element
Shirasaka experimental basin. by using cubic spline functions.

graphic attributes are computed: (1) area of each triangle included in a slope element; (2) area of a slope
element; (3) the average gradient of a slope element; (4) the widths of a slope element, for example, by,
b, by in Figure 6; and (5) the flow distances from the upper boundary, for example, y1, y», ys in Figure
6. Cubic spline functions which deal with a horizontal and vertical change of a slope shape are defined
by using the values of the widths and flow distances respectively.

3 DISTRIBUTED RAINFALL-RUNOFF MODEL BASED ON TIN-DEMs
3.1 Flow model

To deal with water movement on a slope element represented with spline functions, we use combined
surface-subsurface kinematic wave equations considering a change of slope gradient and slope width
(Takasao and Shiiba, 1988). Figure 7 shows a schematic drawing of a flow model on a slope element.
A watershed surface is assumed to be covered with a highly permeable stratum, which we call A-layer,
having a uniform thickness overlying an impermeable base. The infiltration rate of the A-layer is assumed
to be always larger than rainfall intensity. If the depth of subsurface flow exceeds the depth of the A-
layer, then from that point surface flow occurs. In the figure, z represents the distance from the upper
boundary along the steepest descent, b(z) is the slope width at z, 6(z) is the slope gradient at z, y is the
distance projected on a horizontal plane, H is the depth of flow. and D is the depth of the A-layer.

Let ¢ be discharge per unit width, the continuity equation considering a change of slope width and

—32—



:

X

<y

(a) (b}

Figure 7: Schematic drawing of a flow model; (a) a quasi-three-dimensiona] shape of & slope element; (b)
water flow movement on a slope element.

gradient can be written as
ok 1 8
Er @55{@5(93)} = r(z, t) cos(¢(z)) (1)

where 4 Is apparent depth of flow defined as vH, v is the effective porosity of the A-laver and r(x,t) is
rainfall intensity. The momentum equations for only subsurface Row and for combined surface-subsurface

flow can be written as L sin(a
L O )
Y

(3)

where d is apparent depth of the A-layer defined as vD, k is the hydraulic conductivity of the A-layer, n
ig Manning’s roughness coefficient and m = 5/3. The values of b(z) and sin(0(z)) at any point are easily
computed from spline functions which represent a change of slope width and gradient, respectively. To
get solution of the equations, the one-step Lax-Wendroff difference scheme is applied.

For each channel link, discharges from slope elements which contribute the link are computed and
stored in computer memory, and they are routed to a basin outlet through a channel network with
kinematic wave equations. To reduce a computer memory requirement of the program, the computation
order to obtain discharges from channel links is appropriately determined by the algorithm described by
Takasao and Shiiba (19786).

:jm—nw‘@(}1~d)m+wh’ for h > d

3.2 Runoff simulation

The stmulated and observed hydrographs at the Shirasaka experimental basin are shown in Figure 8.
In the figure, the solid hydrograph and dotted hydrograph are the results of runof simulations when
shapes of slope elements are represented with spline functions and rectangles respectively. The model
parameters are determined to fit simulated discharge to observed one when the shapes of slope elements
are approximated quasi-three dimensionally with spline functions. Except for a method to represent s
shape of a slope element. both simulation conditions are the same. The determined model parameters
are as follows: the depth of the A-layeris 50 cm, & = 14 em 5™, v = 0.15, n in slope elements = 0.25
m~Y?, 1 in a channel = 0.05 s m™Y/3, and initial loss of rainfall is 5 mm.

This result shows that the shape of each slope element gives a great impact on hydrologic response
When we use the model whose slope elements are represented as rectangular slopes, it is possible to tur
the simulated hydrograph to the observed one, but the physical meaning of the model parameters m:
be lost. It is emphasized that accurate representation of natural landscapes is fundamental to constru
a distributed rainfall-runoff model with physically sound soil properties.



12 T T ¥ T T 18 T T T T
observed o rainfall intensity —
L Y simulated using sphine functions —— 14 = -
10 ) simulated using rectangles - = 7
= o iy 12 g
3 ar i 4 2
E ! ll é 10 N
< 6k A - = 8t 4
o ' g
El t g
= B b= -
(=} I & 4 b [ -
2F -
% 2 j ’ ’ ’ |
oL.el — o LU
4] 2 4 [ 8 10 o] 2 4 8 8 10
Time(hour) Time(hour)
(a) (b)

Figure 8: (2) Simulated and observed hydrographs. (b) Observed precipitation.

4 FTFECT OF SPATIAL SOIL PROPERTIES ON RUNOFF RESPONSE

Onec of the subjects of distributed hydrological modeling is how to evaluate many distributed model
parameters such as soil thickness, hydraulic conductivity, porosity, surface roughness characteristics.
Usually, to obtain values of these parameters from generally available spatial data sets is difficult. In
Japan soil information has not been mapped or the spatial resolution of available soils information is far
coarser than topographic information. Therefore, such parameters often must be inferred from observed
rainfall and discharge date sets, however it is quite difficult to estimate spatial distributions of model
parameters from only observed hydrological data sets.

One of the methods to cope with the problem is to investigate the influence of spatial distributions of
model parameters on rainfall-runoff simulation results. A knowledge about what information of model
parameters has dominant effects on runoff simulation will be useful to determine model parameters.

4.1 Simulation method

A set of values of a scil parameter, in this case, hydraulic conductivity, is generated according to log
normal distribution. Each value is assigned to each slope element, and runoff is simulated by using the
distributed rainfall-runoff model described at the above sections. Next, the values of the soil parameter
are randomly shuffled for their locations; each value is assigned to each slope element; and runoff is
simulated again. The procedures are repeated and simulated hydrographs are compared. Figure 9 shows
a schematic drawing of the simulation method. If these simulated hydrographs are quite similar, it means
that spatially explicit soil information is not so important.

4.2 Results and discussions

Eight cases of simulations were carried out (the results of three cases are shown in Figure 10). In all cases,
the values of hydraulic conductivity %k, were generated according to log normal distribution. For each
case, mean value was fixed to 1.4 em/sec, and standard deviation was set to 0.1, 0.3, 0.5, 5.0, 10.0, 30.0,
50.0, 100.0 cm/sec, respectively. Values of other parameters were fixed with spatially uniform values.
Rainfall intensity was set to 5.0 mm/hr with spatially uniform.

In each hydrograph of Figure 10, five kinds of simulated discharges are drawn. On the five simulated
discharges, the values of mean and standard deviation of hydraulic conductivity in the study area are same,
but the spatial arrangements of parameter values are different. Figure 11 shows the differences between
hydrographs when we set different values of standard deviation and Figure 12 shows the differences
between time series of areal ratio of surface flow occurrence. From these figures, we see that the differences
of standard deviation of hydraulic conductivity change the flow form and simulated discharges, however
the differences of the spatial arrangements of parameter values do not change the simulated discharges.
This means that the values of mean and variance of hydraulic conductivity within a watershed are the
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Figure 10: Comparison of simulated hydrographs. In each figure, five simulated hydrographs are drawn.
Oun the five hydrographs, locations of assigned hydraulic conductivity values are different, but the values
of mean and variance in the study area are same. In all cases, hydrographs are quite similar.

most important information for the runoff simulations. On the values of soil thickness D, same kinds of
simulations were conducted, and similar results were obtained.

5 CONCLUSIONS

A TIN-based watershed modeling method and a distributed rainfall-runoff model using the topographic
representation were presented. The watershed modeling method allows us to partition a catchment con-
sidering the direction of water flow for dealing with water movement one-dimensionally and approximate
a partitioned catchment to a slope element of a quasi-three-dimensional shape by using cubic spline func-
tions. To deal with water movement on the slope elements, combined surface-subsurface kinematic wave
equations considering a change of slope gradient and slope width were applied.

The model is a useful tool to examine the effect of spatial variability of topography, soil properties.
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and rainfall intensity on runoff characteristics. The model is applied to the Shirasaka experimental basin
(0.88km?) in the Tokyo University Forest in Japan, and the effects of spatial variability of soil properties
on runoff characteristics are examined. As a preliminary result, we obtained that spatially lumped
distribution information (mean and variance) of soil parameters within a watershed is the most important
information and spatially explicit soils information is not always needed under spatially uniform rainfall
condition. If so, we may identify the mean and variance of soil parameters by postulating the distribution
function of soil parameters. Now, we continue a research to examine the effects of spatial variability of
hydrologic variables on simulated discharges for a larger watershed giving spatially distributed rainfall to
distributed rainfall-runoff models.
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