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ABSTRACT: The method of delays is widely used for reconstructing chaotic attractors from experimental
observations. Many studies have used a fixed delay time 7, as the embedding dimension # is increased, but this is
not necessarily the best choice for obtaining good convergence of the correlation dimension. Recently, some
researchers have suggested that it is better to fix the delay time window 7, instead. Unfortunately, 7,, cannot be
estimated using either the autocorrelation function or the mutual information, and no standard procedure for
estimating 7, has yet emerged. However, a new technique, called the C-C method, can be used to estimate either

7, or 7. Using this method, we show that, for small data sets, fixing 7,,, rather than 7,, does indeed lead to a

more rapid convergence of the correlation dimension as the embedding dimension m 1s increased.

1. INTRODUCTION

Much progress has been made in understanding chaotic physical processes in science and engineering. To quantify
the chaotic behavior of a time series, one often calculates the correlation dimension. The first step in this calculation
is the reconstruction of the chaotic attractor from the experimental observations. The standard technique for
attractor reconstruction is the method of delays developed by Packard et al. (1980) and Takens (1981). This method

embeds the finite time series {x,},i=1,2, ..., N, into an m-dimensional space by defining the vectors
X :(xi:xi+t1xi+21:"'3x1+(m—1)r)= )_éi ERm’ (1)

where ¢ is the index lag, and the number of vectors is M = N - (m - 1)¢. If the sampling time is 7, then the delay

time is 7, = ¢7,. One advantage of this method is that it yields the same noise level for each component of the state

vector.
Since the components of the reconstructed vectors need to be independent, the quality of the reconstructed

atiractor depends on the choice of the delay time 7. If 7, is too small, the reconstructed attractor is compressed
along the identity line, and this is called redundance. If T, is too large, the attractor dynamics may become causally

disconpected, and this is called irrelevance (Casdagli et al., 1991). Most researchers have used a fixed value of 7,,

independent of the embedding dimension m, and this is usually selected using either the autovonelation function or
the mutual information. The latter approach is more reliable, but it also requires larger data sets and greater

computation time than the former method. We recently introduced a new method for estimating 7, called the C-C

method, which yields the same results as the mutual information, but which can be used with much smaller data sets,
and which is more efficient computationally (Kim et al., 1999).
On the other hand, several researchers (Broomheat et al.,, 1986; Albano et al., 1988; Martinerie et al., 1992;

Rosenstein et al., 1994; Kugiumtzis, 1996) have suggested that, rather than using a fixed delay time 7, for various
embedding dimensions m, it may be more appropriate to fix the delay time window 1,, = (m — 1)z, which is the
entire time spanned by the components of each embedded vector X, . Unfortunately, the estimation of 7,, is not

fully developed, and Martinerie et al. (1992) have shown that neither the autocorrelation function nor the mutual
information can give 7,,. However, the C-C method can be used to find 7, as well as 7; (Kim et al., 1999).

Using a fixed delay time 7, does not necessarily lead to good convergence of the correlation dimension as the
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embedding dimengion m increases (Wu, 1995), and it may result in the undesirable blurring of the information from
two (or more) states as the number of delay coordinates increases (Rosenstein et al., 1994). However, using a fixed

delay time window 7, can lead to near-minimum redundance, while keeping the imrelevance at an acceptable level
(Rosenstein et al., 1994). Using the C-C method to estimate both 7, and 7, , this study shows that using 7., , rather
than 7, , does indeed lead to a more rapid convergence of the correlation dimension for srnall data sets. Since the
estimation of 7, using the C-C method is efficient computationally, is robust to noise, and does not require large

data sets (Kim et al., 1999), then the use of 7, rather than 7, should become the standard procedure.

2. MEASURE OF NONLINEAR DEPENDENCE
2.1. Correlation Integral and BDS Statistic
The correlation dimension introduced by Grassberger and Procaccia (1983) is widely used in many fields for the

characterization of strange attractors. The correlation integral for the embedded time series is the following
function:

2
CmaN:r:\t EYTIVIEENY O(r- 56;_56‘“)! 7">0,
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@
where O(a) =0, ifa<0,
a)=1, ifaz0,

N is the size of the data set, ¢ is the index lag, M= N - (m - 1)t is the number of embedded points in m-dimensional
space, and ” - ” denotes the sup-norm. C(m, N,r,t) measures the fraction of the pairs of points X,,i=12, ., M,
whose sup-niorm separation is no greater than . If the limit of C(m, N,7,t) as N —> co exists for each r, we write

the fraction of all state vector points that are within » of each other as C(rm,r,t) = },im C(m,N,r,t), and the
D
correlation dimension is defined as D, (m,#) =lim[log C(m,r,t)/logr]. In practice, N remains finite, and, thus, »
. r—0 .

cannot go to zero; instead, we look for a linear region of slope D, (m,1) in the plot of log C(m, N,r,t) vs. logr.

Brock et al. (1991, 1996) studied the BDS statistic, which is based on the correlation integral, to test the null
hypothesis that the data are independently and identically distributed (7id). This test has been particularly useful for
chaotic systéms and nonlinear stochastic systems. ’

Under the iid hypothesis, the BDS statistic for m > 1 is defined as

M

BDS (m, M,r) =W

[C(m,M,r)- C" (1, M,r)], €)

and this converges to a standard normal distribution as M —» co . Note that the asymptotic variance o’ (m, M, r) can
be estimated as
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The BDS statistic originates from the statistical properties of the correlation integral, and it measures the
statistical significance of calculations of the correlation dimension. Even though the BDS statistic cannot be used to
distinguish between a nonlinear deterministic system and a nonlinear stochastic system, it is a powerful tool for
distinguishing random time series from the time series generated by chaotic or nonlinear stochastic processes. Its
statistical properties, along with proofs, can be found in the literature (1991, 1996).

2.2. C-C Method

The present study is concerned with the properties of the quantity S(m, N,r,t) = C(m,N,r,t) - C"(1,N,r,1).
We refer to a comment by Brock et al. (1991) : © If a stochastic process { x, } is iid, it will be shown that

C(m,r)= C™(1,r) for all m and r. That is to say, the correlation integral behaves much like the characteristic

function of a serial string in that the correlation integral of a serial string of independent random variables is the
product of the correlation integrals of component substrings.” This led us to interpret the statistic S(m, N,r,t) as

the serial correlation of a nonlinear time series. Therefore, it can be regarded as a dimensionless measure of
nonlinear dependence, and it can be used to determine an approprate index lag . For fixed m, N, and r, a plot of
S(m, N,r,t) vs. tis a nonlinear analog of the plot of the autocorrelation function vs. .

In order to study the nonlinear dependence and eliminate spurious temporal correlations, we must subdivide the
time series {x,},i=1, 2, .., N, into ¢ disjoint time series of size N/t. S(m,N,r,t)is then computed from the ¢
disjoint time series as follows:

For t=1, we have the single time series {x,,x,,...,x, },and

S(m,N,r,1) = C(m,N,r,l) —C"(1,N,r]). (7

For t = 2, we have the two digjoint time series {X;,x;,...,%Xy_; }and {X,,%;,...,x,}, each of length N/2, and we

average the values of S(m, N/2,r,1) for these two series:

1
Sm, N,r2) = {[C(m N 1 2,r2)= CP (LN 1 2,r.2) ]
L Cy(m N 2,7,2)— CP (LN 12,,2) 1. )

For general 7, this becomes



L
S(m,N,r,t) = ;Z[Cs(m,N/t,r,t) —~C™(1L,N/t,r,0)]. ©)

s=1
Finally, as N — oo, we can write

1 t
S(m,r,0) = 72[(:5 (m,r,f) - C" (1,7, 1)1, m=2,3, .. (10)
s=1

For fixed m and ¢, S(m,r,t) will be identically equal to zero for all r if the data is iid and N — o . However,
real data sets are finite, and the data may be serially correlated, so, in general, we will have S(m,r,t) #0. Thus, the
locally optimal times may be either the zero crossings of S(m,r,?) or the times at which S(m,7,£) shows the least

variation with r, since this indicates a nearly uniform distribution of points. Hence, we select several representative
values T and we define the quantity

AS(m,t) = max{S(m,r,,t)} ~ min{S(m,r,,1)} . (an

The locally optimal times ¢ are then the zero crossings of S(m,r,f) and the minima of AS(m,t). In the first
case, the zero crossings should be nearly the same for all m and r, and, m the second case, the minima should be
nearly the same for all m (otherwise, the time is not locally optimal). The delay time 7, will cotrespond to the first
of these locally optimal times.

In determining the nonlinear dependence of a finite time series by using the statistic S(m, N,r,t), one must
have criteria for selecting the values of m and 7. In addition, one must know the role of the sample size N. For a
fixed value of N, as m becomes large, the data become very sparse, so that C(m, N,7,t) becomes vanishingly small
Also, if r exceeds the size of the attractor, then C(m, N,r,t) saturates, since all pairs of points are within the

distance r. Thus, neither m nor r should be too large.

Brock et al. (1991) investigated the BDS statistic for time series generated from six distributions in order to
determine what values of m and r are appropriate. Time series with three sample sizes, N = 100, 500, and 1000,
were generated by Monte Carlo simulation from six distributions: a standard normal distribution, a student-t
distribution with 3 degrees of freedom, a double exponential distribution, a chi-square distribution with 4 degrees of
freedom, a uniform distribution, and a bimodal mixture of normal distributions. These studies led to the conclusion
that m should be between 2 and 5, and r should be between cr/ 2 and 2 & . In addition, the assumed distributions
were well approximated by finite time series when & = 500.

Thus, we select four values of r in the range o/2<r<2 ¢, rh=05c,n=(100c,r=15)c, and

r=20) o, as reprcsentative_values. We then define the following averages of the quantities gi.ven by Egs. (10)
and (11):

5 4
5= 3" Sm,r,.0), (12)
16m22j:1
- 1
AS(r) = ZéAS(m,t). (13)

We look for the first zero crossing of S(f) or the first local minimum of AS(¢) for finding the first locally

optimal time for independence of the data, and this gives the delay time 7, = #7,. The optimal time is the index lag



t for which S(¢) and AS(t) are both closest to zero. If we assign equal importance to these two quantities, then
we may simply look for the minimum of the quantity

Seor (1) = AS@HS ()], (14)
and this optimal time gives the delay time window 7, = f7, .
3. PLATEAU ONSET OF THE CORRELATION DIMENSION

In this study, we consider the following three systems:

the Lorenz system (Grassberger and Procaccia, 1983)

i=-a(x-y),
y=-xz+cx—y, (15)
Z=xy—bz

the Rabinovich-Fabrikant system (Rabinovich and Fabrikant, 1979)
i=y(z-1+x)+m,
y=xBz+1-x)+p, (16)
2=-"2z(a+xy),

and the three-torus (Martinerie et al., 1992) .

x, = Sin[_i‘i_} + sin{ 3‘[2_1} + sin[ 9‘/5'] . a”n

500 250 500

For the Lorenz system, we solve the system of equations for a=10.0, 5=28.0, and ¢=8/3 to generate a time series
of the variable x with 7= 0.01. We then compute S{(m,7,t) from Eq. (10), and the results are shown in Fig. 1.

The circles in Fig. | indicate the index'lag ¢ where the vanation of S(m,7,t) with r is at its first local minimum,
and Fig. 2(a) shows this first local minimum of AS(m,1) more clearly. We choose the delay time at this point,
which gives 7z, =18 7, = 0.18 [see Fig. 2(b)]. This agrees with the delay time z,,= 0.17 found by Martinerie et al.
() in Fig. 2(c),
we choose the delay time window 7,,= 123 7, = 1.23. Similar analyses are performed for the other two systems,

and the delay times and the delay time windows obtained by the C-C method for the three systems are summarized
in Table 1.

(1992) using the first local minimum of the mutual information. Also, from the minimum of S,

cor

Table 1. Summary of results for three dynamical systems.

. C-C Method
System Parameter | Variable T,
5 Td Ty
Lorenz a=10.0, x 0.01 0.18 1.23
5=28.0,
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c=8/3
Rabinovich- [y =0.87, X 0.01 0.52 1.28
Fabrikant a=1.1
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03 04
i m=3 R= black(.) 05
02 2 Mo ) : grey (-). 1.0
ol @ g ()19 ®) HAREY
A black (-) 20 ack (-} 2

S{m,rt)

Sl

-005 . - 01 . .
a 50 100 150 200 0 al 100 150 200
t 1
0.5 T . T 06
05" m=4 R= black { )-05 | 0.8 m=5 R= black(‘)_'nﬁ
' grey (-).10 gfeVE'%_lg
0.4 grey (--): 14 | 04} (@ grey €9 1.
‘ {©) black (-): 20 black (-): 20

S{m.i.

01 i 1 - -U. = + L
0 50 100 150 200 0 50 100 150 200

Fig. 1. S(m,#,t) for the variable x from the Lorenz system of Eq. (15) with 4=10.0, 5=28.0, ¢=8/3, and 7,=0.01
using 3000 data points. The circles indicate the vicinity of z,, where the first local minimum occurs in the

variation of S(m,r,t) withr. Note thatR= r/o .

The correlation integrals for the Lorenz system, using the fixed value of 7, and the fixed value of 7, are

computed for N = 20000 data points, and the results are shown in Fig. 3. From the linear regions of these
comelation integrals (which have been darkened in Fig. 3), the correlation dimensions are calculated, and these
results are shown in Fig. 4, together with the value D), = 2.05 obtained by Grassberger and Procaccia (1983). The
two sets of results are virtually identical, and the plateau onset occurs at about m = 16.

Next, we perform a similar analysis for a small data set with only ¥ = 3000 data points. The correlation
integrals based on 7, and 7, are drawn in Fig. 5, and the correlation dimensions are shown in Fig. 6. For the



fixed value of 7, the plateau onset occurs at about m = 24, but, for the fixed value of 7, , the plateau onset does

not occur until about m = 28.
We solve the Rabinovich-Fabrikant system of Eq. (16) for ¥ = 0.87 and = 1.1, and we generate a time series of

3000 data points for the variable x with 7,= 0.01. The cormrelation dimensions based on the values of 7, and 7,
given in Table 1 are shown in Fig. 7, along with the value D, = 2.19 found in Grassberger and Procaccia (1983).
The plateau onset for the correlation dimension obtained using 7, occurs at about m = 10, but the plateau onset

obtained
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Fig. 2. AS(m,t), AS(), S(¢),and S, (t) for the variable x from the Lorenz system of Fig. 1
The solid line locates 7, =18 7, , and the minimum of S, (¢) yields 7, =123 7_.



Fig. 3. Correlation integrals for 20000 data points generated from the Lorenz system
of Eq. (15) using (a) 7,=187, and (b) 7,,=1237,.
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Fig. 4. Plateau onset of the correlation dimension for 20000 data points generated
from the Lorenz system using 7, = 18 r_ (circles) and 7,,= 123 7 (crosses).

A horizontal line is drawn at the true correlation dimension of D, = 2.05.
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Fig. 5. Correlation integrals for 3000 data points generated from the Lorenz system
using (a) 7,= 187, and (b) 7, =123 7.
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Fig. 6. Plateau onset of the correlation dimension for 3000 data points generated
from the Lorenz system using 7,= 18 7 (circles) and 7 = 123 7, (crosses).

A horizontal line is drawn at the true correlation dimension of D, = 2.05.
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Fig. 7. Plateau onset of the correlation dimension for 3000 data points generated
From the Rabinovich-Fabrikant system of Eq. (16) for ¥ =0.87 and @ =1.1

-using 7,=527_(circles) and 7= 128 7, (crosses). A horizontal line is drawn

at the true correlation dimension of D, = 2.19.
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Fig. 8. Plateau onset of the correlation dimension for 3000 data points generated
from the three-torus of Eq. (17) using 7,= 55 (circles) and 7, = 101 (crosses).

A horizontal line is drawn at the true correlation dimension of D, =3.0.
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using 7, does not occur until about m = 16.
Fig. 8 shows similar results for the three-torus of Eq. (17) using the values of 7, and 7, given in Table 1.
Using the fixed value of 7, causes the correlation dimension to saturate at the correct value of D, =3 at about m =

24, but, when the fixed value of 7, is used, saturation has still not occurred for m = 30.
4. CLOSING REMARKS

In this study, we have shown that, for small data sets, using a fixed delay time window 7

w?

tather than a fixed delay
time 7, leads to a more rapid convergence of the correlation dimension as the embedding dimension m is increased.

Although no standard technique for estimating 7, has yet emerged, we have shown that the C-C method is well-

suited to this task. Furthermore, this method is efficient computationally, it is robust to noise, and it may be used for
small data sets. As a result, the use of a fixed value of 7, rather than a fixed value of 7, should become standard

w?
practice. This is particularly important in fields such as hydrology and atmospheric science, where small noisy data
sets are common.
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