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1. Introduction

In many environmental applications shallow water turbulence is commonly observed because
flows in river, estuary and coastal areas are mainly categorized as shallow water flows in which the
horizontal scale of flow geometry is much larger than the vertical scale. In this condition, the flow is
well mixed over the water depth due to strong vertical mixing induced by the bottom shear stresses.
Consequently, the vertical variation of the mean flow is approximately uniform in the vertical
direction. In this case, depth-averaged models have been frequently applied to free surface hydraulic
engineering problems because of their efficiency and reasonable accuracy.

The particular physical attributes of real system make some important demands on the numerical
methods used for their simulations. Numerical stability, solution accuracy, computational efficiency,
and ease of programming are viewed as being crucial factors in the development of an effective
numerical method. Overcoming the stability limitation on the time step allows significant
improvements in computational efficiency. Furthermore, the computational accuracy may be improved,
because the numerical method is used on fewer occasions for any given problem.

The objective of this study is to present an efficient and accurate numerical method to compute
turbulent flow in shallow water region. The governing equations are solved in a partially staggered
grid system by the fractional step implicit method. The present model consists of three-step
computational procedure for momentum quantities and two-step for scalar quantities. The advection of
momentum and scalar quantities is computed using the improved method of moments. The diffusion
of momentum and scalar quantities and hydrostatic propagation are computed using the implicit finite
difference schemes.

2. Depth-averaged Flow Governing Equations

The governing equations used in the present hydrodynamic mode] in Cartesian coordinates, can be
described by the following shallow water equation based on the depth-integrated form of the Reynolds
equation for the statistical average of a turbulent flow. The depth-integrated mass conservation and for
a constant density turbulent flow on a rotating earth the depth-integrated momentum equations for
flow in the horizontal coordinate directions x and y, can be expressed, respectively, as
Post-Doc” & Professor”, Department of Civil, Urban & Architectural Engineering, College of
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where ¢ =water elevation, H =water depth, unit discharge g =UH, g, =VH, f=Coriolis
parameter, g=acceleration due to gravity, ¢, =flow resistance coefficient, c,=wind resistance
coefficient, p, =air density, wind speed W, =\/W,2 +W}, flow speed U, =+U*+V*, effective
viscosity v, =v+v,. In (3.34), the various terms are the depth-integral local acceleration (term 1),
advective acceleration (term 2), Coriolis force (term 3), pressure gradient (term 4), bed shear
resistance (term 5), wind shear force (term 6), and turbulent induced shear force (term 7).

For the closure of the system of equations, the most frequently used model is a single-length-scale
two-equation k — & model introduced by Rastogi and Rodi (1978). If the flow quantities, such as H,
U,and V, satisfy the equation of depth-averaged mass conservation, the variation of k£ and ¢ is
determined by the numerical solutions of the following depth-averaged transport equations:
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where the term for the turbulence energy production due to the horizontal shear is
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The terms originating from non-uniformity of vertical profiles are assumed to be absorbed in the
product terms P, and P, . The standard values for the model parameters are ¢, = 1.44, ¢, =1.92,
¢,=1.0, and ¢, = 1.3. These constants have been chosen to make the model compatible with the
logarithmic velocity distribution near the wall with & =0.435. Eqs. (2) —(5) can be written in a general
form of a balance of convection, diffusion, and product terms
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The symbolic variables of ¢, T', and in (7) for the momentum and turbulence transport eqations can
be expressed as:
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For the momentum equation
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For kinematic turbulence energy and its dissipation rate
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3. Solution method

The present chapter introduces an implicit fractional three-step method to solve the depth-averaged
shallow water equation. This procedure is based mainly on the principle of the split-operator approach
proposed by Benque et al. (1982). Substituting g, =UH and ¢, =VH and assuming that U, ¥, and
H satisfy the continuity equation, advection equation (7) can be written as
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Once ¢™" =U"™" or V""" is computed by using (12), the corresponding unit discharges are
determined using ¢, =U""-H" and ¢, =V"" - H".

The diffusion operator can be expressed as
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The hydrostatic propagation step combines the continuity equation with the remainder of the
momentum equations.
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The bed friction is a function of water depth and flow velocity, which can be expressed as:
e, UU, =ggi"a/ ™l b (17

—999 -



where g, =\/(qg”"’f +(g* ) . Substituting the bed friction term (17) into (15), the expression of
momentum quantities at time level 7z +1 can be represented as follows:
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where 4 =1+ gArg"? / (C' P ")2 . Similarly, (16) can be written in term of q;“ . Then, Substituting
(18) into (14) and introducing H™=h+{"+Al and {™=¢" +A¢ yields to the equation in the
single unknown AZ
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The govemning equations are solved in a partially staggered grid system by the fractional step
implicit algorithm. The advection of momentum and scalar quantities is computed using the improved
method of moments inchiding a new moment updating procedure (Paik and Cho, 1999). The diffusion
of momentum and scalar quantities and the hydrostatic propagation are descritized by the implicit
second-order central differencing. This differencing creates a coefficient matrix banded by five
diagonal elements. The resulting system of equations is solved iteratively by the strongly implicit
procedure (SIP). Stone’s method usually converges in a small number of iterations for solving non-
linear problems with moderate accuracy (Ferziger and Feric, 1996).

4. Application

The developed numerical model is applied for predicting the tide-induced circulation in narrow
entranced rectangular harbor. The subject test has considered the harbor geometry with the dimensions
being approximated as closely as possible to those of the laboratory models. Falconer and Yu (1991)
conducted a series of experiments for tidal eddies in a rectangular harbor with narrow entrances. The
model harbor was set to be square, with prototype dimensions of 432 mx 432 m and was assumed to
experience sinusoidal repeated semidiurnal tides of period 12.4 hours and range 4 m, as shown in Fig.
1. The horizontal and vertical scale ratios of hydraulic mode are 1:400 and 1:40, respectively. The
computational domain consisted of a mesh of 35 x 28 grid squares. The grid spacing for the
simulation is 0.06 m and the time step is 0.4 s. The equivalent sand grain roughness height &, is
0.05mm. For closed boundaries, the no-slip boundary condition and the wall function were applied.
Also the wall function was applied to two computational grid points near the entrance. For the open
boundary conditions of the numerical model a sinusoidal tide of period 707 was assigned at the open
boundaries. The tidal range and the mean harbor depth are 0.10 m and 0.15 m.

The typical predicted velocity fields by the present model at mean water level flood and ebb tides
are shown in Fig. 2. The predicted velocity fields appeared to produce the realistic circulatory velocity
fields, particularly, clockwise rotating gyres at mean water level ebb tide. A general comparison of
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velocity field predictions did not appear to show a marked difference with those published in recent
studies by Falconer and Guiyi (1994). Although no experimental data were available for the eddy
viscosity distributions at the time of the study, numerical predictions are obtained of the eddy viscosity
distributions at mean water flood and ebb tides shown in Fig. 3. In comparison these figures with those
in the previous study (Falconer and Guiyi, 1994), the eddy viscosity values in the vicinity of the
harbor entrance appeared to be of similar magnitude. Within the harbor at the mean water level flood
tide, however, it can be seen that there is a certain difference in the eddy viscosity magnitudes. This
difference is due to advection of the relatively high turbulence generated by the high velocity and
shear gradients along the separation streamline near the wall downstream of the harbor entrance. This
difference by one order in the magnitude of the eddy viscosity did not give a significant influence on
circulation flow pattern (Langerak, 1987). However, this variation has been included in the diffusion
process, which may give much significance in mass transport modeling,

5. Conclusions

The present research focuses on the development of the improved method of moments with
variance diminishing procedure for solving the advective transport of momentum and scalar quantities.
The present numerical method has been successtully applied to predict the tidal induced circulation
flow and the steady-state recirculating flow problems with laboratory flume data. Comparisons of the
numerical solutions with the published experimental results have demonstrated that the present
numerical method produces the encouraging accuracy and can be applied to real problems with
various dynamic and geometric boundary conditions.
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