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Abstract: An improved inverse perspective mapping
(IIPM) is proposed so as to reduce computational
expense of recovery of 3D road surface. An experimental
system based on IIPM is developed to detect lane
parameters for a driver assistant system. A re-organized
image is obtained quickly and exactly by IIPM.
Efficient preprocessing techniques are used to enhance
the information of lane and obstacles. Lane in the
preprocessed image is located with region identification.
Lane parameters are estimated effectively. An algorithm
to adaptively modify the parameters of IIPM is given.
Properties of obstacle on 3D road surface are discussed
and used to detect obstacles in the current lane and
neighboring lanes. Experimental results show that the
new method can extract lane state information
effectively.

1. Introduction

Numerous accidents are caused by driver inattention
or driver impairment. To reduce the occurrence of such
accidents, driver assistance systems are designed to warn
drivers and to help them to keep their vehicles in their
proper lane and away from obstacles. The key function
of a driver assistance system is automatic detection of
the lane and of obstacles, using image sequences
captured by video cameras mounted on the moving
vehicle.

Many techniques of lane and obstacle detection are
used in driver assistance systems. These techniques
include the use of neural networks [1]; optical flow
techniques [2]; identification of lane markings aided by
color information and deformable templates [3]; model-
based approaches [4]; re-organized image based
approaches [5,6]; and so on.

Re-organized image based approaches use inverse
perspective mapping (IPM) to remove perspective effect
and reconstruct 3D road surface [7]. GOLD system [5]
has been developed with a stereo vision-based hardware
and software architecture. It includes three nparts:
detecting road markings through morphological
processing, overcoming the annoying problems caused
by non-uniform illumination, and implementing the
detection step on massively parallel architectures in
order to obtain real-time performance. It detects
obstacles using stereo images. However, the system is
quite vulnerable to road conditions. When the road is not
flat (there is a slight slope in the road), the lane detection
in GOLD cannot produce valid results.

RALPH system [6] decomposes the problem of lane

detection into three steps: (1) down-sampling of the input
image to create a low resolution image, (2) determination
of the road curvature in which a “hypothesize and test”
strategy is employed, and (3) determination of the lateral
offset of the vehicle relative to the lane center using a
template-matching approach on the scan-line intensity
profile generated in the curvature estimation step.
However, it has two problems. One is that it has to adopt
a strategy of down-sampling of the input image due to
the large computational expense of obtaining the re-
organized image, in which the resolution of the sampled
image is too low to extract lane parameters effectively.
The other problem is on a sloped road.

In this paper, a new approach to detection of a lane
and obstacles is proposed, based on inverse-perspective
mapping. In section 2, an improved inverse-perspective
mapping is given, in order to improve the performance of
the system. With IIPM, a re-organized image can be
obtained quickly. Section 3 describes a new method of
lane and obstacle detection from the re-organized image.
Section 4 shows experimental results of lane state
information obtained by the new method.
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Fig. 1 Geometric model of camera system

2. IIPM for Recovery of 3D road surface

It is known that each pixel in 2D image plane
represents a different area in the real world due to the
perspective effect. The pixels near the bottom of the
image plane correspond to smaller areas in the real world,
while those pixels close to the top correspond to
relatively larger areas and may possess more information
about the road. Fig. 1 shows a geometric model of a lane,
using one camera mounted in the vehicle. In the figure,
(d A1) expresses the position of the camera in the real
world. @ is the lane width, and y and 6 denote the vehicle
deviation angle and inclination camera angle,
respectively. Let Oxyz and ouv denote 3D world space W



and 2D image plane I, respectively, where the original
point O in W is shown in Fig.l. According to semi-

infinite pyramid view volume for perspective projection ‘

in computer graphics, the mapping between I and W is
given by
u(x, y,0) =k, [arctg(hsin(y, ) /(x - d)) - (0 - )] eY)
V(x, }’,0) = kv [Ygr —('Y"'(X)] (2)
where &, and &, are coefficients of &, =2a/(M -1)

and k, =2a/(N-1), and Ty =arctg(¥). 2o denote
y—

the camera’s angular aperture, and MxN is the camera
resolution. In some system [5}, the terms y and 6 in
Egs.(1) and (2) have been considered as constants,
because it is assumed that road is flat, and there exist in
precise road geometry. Although these assumptions can
aid a lane detection algorithm and speed up the
processing, they also result in low robustness and
flexibility. In fact, y and 6 vary with time under real road
condittons, which will require the hardware system to be
quite complicated in order to improve the reliability and
flexibility of the system. To solve the problem, a
modified representation of Eq.(1), called IIPM, is given
as follows

u(x,y,0) = k,[arctg(hsin(v,,0)(x —d)) = (8, )] - £,0, (3)
V(x,y,0)=kv['nyo—('Y0 -a)]—kv’YA (4)
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d,
l°),6=90+6A,y=yo+yA. 6, and

wherey , = arctg(

Yo are the initial camera parameters, decided by the
system, and they are all fixed. 6, and y, are the
differences between the initial values and the real camera
parameters relative to the road surface. v, is also fixed
for a given x and y, which implies that the first terms on
the right side in Eqs.(3) and (4) are constants. So, Eqs.(3)
and (4) are further represented by

u(x, y’O) =Ug (x> y’o)_kueA (Sa)

V(.X, y’o):vo (X’ yso)_kaA (Sb)
where u,(x,y,0) and v,(x,y,0) are fixed for given x and y.

Compared with Eqgs.(3) and (4), the main advantage
of Eq.(5) is to simplify the design of the hardware
system without losing robustness and flexibility of the
system. u(x,y,0) and v(x,y,0) can be exactly and obtained
by Eq.(5) with very lower computational expense.
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Fig. 2 A new method of lane state detection

3. New Approach of Lane and Obstacle

Detection using IIPM

A new method of detecting lane and obstacles based on
IIPM is illustrated in Fig. 2. Lane parameters in the n-th
frame input image consist of 6, y,, d,, w, lane start
location (x;, and xg,), lane curvature 1/R,, and of an

~ existence of obstacles. When the system starts to detect

lanes and obstacles, lane state parameters 6, v, and d are
first set as the initial camera parameters 6,, v,, and d,
respectively. A gray-scale road image G, is once inputted,
it is first transformed into the re-organized image G, by
using Eq.(5). G, is filtered with two different one-
dimensional filters, a weighted filter and a mean filter,
and two resultant images are binarized, and the
corresponding binary images G,, and G, are obtained.
G,; and G, are separately processed with a size-filter and
binary morphological filter, and the resultant images G,
and G; are obtained. “AND” logic operation between G,
and G, is performed, and the resultant image G, is used
to detect the lane. Then, G, and the results of the lane
detection are used to detect obstacles.

To determine the initial location of the lane, region
identification technique is used to search the regions of
lane marking in G,. According to the location of the
searched lane markings on both sides of the right and left,
the corresponding fitted-lines, L, and Ly, are estimated as

L x=ty+xp, (6a)

Ly: x=tpy+xp (6b)
where #; and ¢, express the reciprocals of the slopes of L
and Lg, respectively. When the lane is approximately
parallel to the vertical axis y of the re-organized image, ¢,
and ¢ are very close to zero.

The central line between L, and L, is easily obtained,
and denoted by L.. The upper part of G, is partitioned
into four regions by L;, Lg, and L, so that the left and
right lane markings in the upper part of the re-organized
image can be searched in these regions. To improve the
reliability of the lane detection, the lane information of
the previous frame of road image is used to check the
fitted-lines L, and L. Next, the lane state parameters are
estimated. 0, in the current road image is obtained by

0,=0 +k, arcctg(ty) — arcctg(t;) )
where 0 is 0, or 6, 0(t,, tp)=arcctg(ty) — arcctg(t,), and

ky is a constant. If 6= 6,, Eq.(7) is also given as

0,=06,+ A8, . ®
where AB, expresses the variance, produced by a sloped
road surface or camera vibration.

The vehicle deviation angle vy, is calculated by

= ¥ HhY )
where ¥ isy, or y,,. k, is a constant, ¥=arccig(ty), t;
is the reciprocal of the slope of L.. The lane width w,
equals to sin(y )(xz, - x;, ), and the initial lane center
offset d is equal to d, + 0.5(xg, - x;, ).

After the lane is detected, G, and the detected lane
information are used to determine whether there is any
obstacle on the current lane or neighboring lanes. Fig. 4
illustrates the basic principle of obstacle detection in W.
Fig.4(a) shows an image G, in I, in which there are three
obstacles on the current lane and its two neighboring
lanes. Fig.4(b) is the re-organized image in W, obtained



by IIPM. After some processing, G, is obtained and used
to detect obstacles, in combination with the lane
information. In Fig.4(c), the obstacle in each lane has its
own feature, i.e., the specific directions of its straight-
segments. The direction 3 of the straight segment is
computed by

B= O.Sarctg(ﬂ——) (10)

P20 — P2
where p,,, Py, and p,, denote the different central
moments of the segment, respectively. The shape
features of a segment in G, can be exploited to determine
whether there is an obstacle in a given lane.
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Fig. 3 Analysis on detecting obstacle on 3D road surface

4. Experimental Results

An experimental system with one CCD camera sensor
is established to test the proposed method. Figs.4(a) and
(b) are a road image G, and the recovered road surface,
G,, obtained by IIPM. Figs.4(c) and (d) show two
processed binary images, G, and G;, and Fig. 4(e) is G,
G =G, NG;, which is used to detect the current lane.
Region identification is operated to locate the lower parts
of the lane markings. The fitted-lines, L, and Ly, of these
lane markings are estimated in Fig. 4(e), and their
central-line L., is also obtained. Three fitted-lines divide
the upper half of the image into four parts, in which the
upper parts of the lane markings are searched. Then, the
lane parameters are estimated. The vehicle deviation
angle vy, is 0.57°, which implies that the lane tangent
bends to the right. The radius of the lane curvature is
about 1401.88m, the lane width is about 3.64m, and the
lateral offset x,(y,) in front of the vehicle 28m is about
0.25m. The detected lane structure and G, are used to
determine if there are any obstacles on the current lane
or neighboring lanes. From G, in Fig. 4(c), obstacles are
detected, one in the current lane and the others in the left
neighboring lane, according to the features in Fig.3(c).

Fig. 5(a) shows a test image, with a flat road surface,
and Fig. 5(b) is estimated lines, /; and /, in 2D image,
here v; is a vanishing point. Fig. 5(c) gives the mapping,
Ly and L;, of [ and /; in Fig. 5(b), obtained with 6. In
Fig. 5(c), the dash lines represent the mapped results of

I and [, with 6, which are parallel. Lg, L;, and the
vertical axis form two angles, yr and y,. When A® varies
from -2° to 2°, the corresponding 6(¢,%;) 1is estimated
and shown in Fig. 5(d). It is seen that there exists an
approximately linear relation between 0(#,#;) and A9, in
this case, k,=0.3129. For Fig.5(c), A6 is 0.50°, and yg and
v, are computed as —1.2189° and 0.3657°. Based on v,
and y,, A is estimated as -0.4958°, which is quite close
to its real value.

The new method may also be tested to detect lanes
and obstacles in road images with a sloped road surface,
in which the inclination camera angle 0 has to be
modified due to the slope. Fig. 6 shows one of
performances. Using IPM with the initial inclination
camera angle 6, its re-organized image is obtained in Fig.
6(b). Figs. 6(c) and (d) are the corresponding G, and G,,
obtained from Fig. 6(b). It is clear that L, and L; are not
parallel because of the sloped road surface and the fixed
B, used, which results in some errors in detecting lane
state. The sloped road surface calls for an increase in the
real inclination camera angle, relative to the road surface,
and it is not suitable to adopt the fixed inclination camera
angle 6,. In this case, A9, is estimated as 0.59°, it implies
that the real inclination camera angle is 0.59° greater
than 6,, and there is an up-sloped road surface. To
overcome the problem, the new method uses variable
inclination camera angle 6, (8.=0,+A8), adaptively
modified with L; and L. Figs. 6(e) and (f) are G, and G,,
obtained from the recovered road surface with 6.
Compared with Fig. 6(c) and (d), more accurate estimate
of lane state can be obtained from Figs. 6(e) and (f),
which indicates that the new method has well robustness
and flexibility.

Fig. 7 shows the results of parameter estimation in
image sequence, where the horizontal axes denote the
number of frame in image sequence. Fig. 7(a) is the
estimated y,, which indicates the direction of the road.
Fig. 7(b) is the estimated AB,, which shows that the
inclination camera angle 6 varies frequently because of
the sloped road surface and vehicle vibration. Fig. 7(c)
shows the lateral offsets x,(y,) at 28m in front of the
vehicle, which indicates the deviation of the vehicle from
the lane center at the future 28m

5. Conclusions

Perspective effect makes pixels in the image plane
have different meanings, depending on their position in
the image. It leads to some difficulties in estimating the
lane state parameters. IPM is often introduced to remove
perspective effect, however, it also results in more
complexity of the system. To reduce the computational
expense of IPM, an IIPM is given in this paper so that the
contradiction between the computation expense and the
robustness of the system is alleviated. The proposed
method of a lane and obstacle detection from a re-
organized image uses some preprocessing techniques to
enhance information on lane and obstacles. In the new
algorithm, the inclination angle of camera can be
adaptively calculated, which improves the accuracy of
lane parameter estimation over that done with the fixed
inclination camera angle. The test system uses only one



camera and then the complexity of the system is much
reduced. Experimental results show that the system
detects lane and obstacles well and gives an effective
information on lanes to a driver assistant system.
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