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ABSTRACT

This paper addresses a new method of blind source sep-
aration (BSS) when sources are nonstationary signals.
Our method requires only multiple correlation matri-
ces of the observed data at several time-windowed data
frames to estimate the mixing matrix. In contrast to
most existing BSS methods where higher-order statis-
tics is necessary, our method is based on only second-
order statistics. In the framework of correlation match-
ing, we develop a new BSS algorithm. The useful be-
havior of the proposed method is verified by numerical
experiments.

1. INTRODUCTION

Blind source separation (BSS) is a fundamental prob-
lem that is encountered in many practical applications
such as telecommunications, image processing, feature
extraction, pattern recognition, and biomedical signal
analysis, etc. The task of BSS is to recover source sig-
nals from their linear instantaneous mixtures without
resorting to any prior knowledge except for statistical
independence of sources. One popular approach to BSS
might be independent component analysis (ICA) which
aims at decomposing the multivariate observations into
a linear sum of statistically independent components.
A variety of methods have been developed for BSS via
ICA. Recent review articles can be found in [3, 7].

In most existing methods stationary sources are con-
sidered, hence, higher-order statistics is necessary ei-
ther explicitly or implicitly. In typical ICA algorithms,
the selection of nonlinear activation functions plays an
important role since the optimal nonlinear functions
depend on the probability distributions of sources which
are unknown a priori [12, 10].

Many natural signals are nonstationary (in the sense
that their variances are slowly time varying). A typical
example may be speech signal. In contrast to the case
of stationary sources, it is possible to perform BSS us-
ing only second-order statistics. Nonstationary sources
in the task of BSS, were first considered by Matsuoka

et al. [14]. It was further elaborated by Choi [8]. The
key idea for BSS when sources are nonstationary lies in
the fact that the correlation matrices are time-varying,
so they carry sufficient statistics for the identification
of the mixing matrix. In this paper we formulate the
BSS task problem as a correlation matching problem
and develop efficient iterative algorithms.

2. BLIND SOURCE SEPARATION

Here we describe the data model and explain what
the BSS is. The conventional BSS or ICA algorithms
were briefly reviewed in the framework of laten variable
model with probability density matching method.

2.1. Data Model

Let us assume that the n dimensional vector of sensor
signals, x(t) = [21(t),... ,T.(t)]T is generated by an
unknown linear generative model,

z(t) = As(t), (1)

where s(t) = [s1(t),...,5,(t)]T is the n dimensional
vector whose elements are called sources. The matrix
A € R™" is called a mixing matrix that is assumed
to be of full rank. It is assumed that source signals
{s:(t)} are statistically independent.

The task of BSS is to recover source vector 8(t) from
the observation vector x(t) without the knowledge of
A nor s(t). In other words, BSS aims at finding a
linear mapping (recognition model) which transforms
sensor signals {z;(¢)} to the output signals {y;(¢)} such
that the signals {y;(t)} are possibly scaled estimates of
sources {s;(t)}.

2.2. Probability Density Matching

Most. methods of BSS have focused on statistically in-
dependent stationary non-Gaussian sources, so higher-
order statistics was necessary. In such a case, BSS can
be formulated as an ICA problem [13]. BSS or ICA
can be illustrated as a probability density matching
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problem [4] which is identical to nonlinear infomax [5],
maximum likelihood estimation [6], mutual information
minimization [3].

Let us denote the observed density and model den-
sity by p°(x) and p(x), respectively. The model density
p(x) satisfies the following relation.

log p(z) = —log | det A| + ) _ log pi(s:)- (2)
1=1

As an optimization function to find A which best match
p°(x) and p(z), the Kullback-Leibler divergence is con-
sidered [4]. This gives the risk R that has the form

R = KL[p°(z)|p(z)]

= /p"(a:)log I:((:)) dz. 3)

Invoking the relation in (2), the loss function L is

L =log|det A| — Zlogpi(si)7 (4)

i=1

where logp°(x) was neglected since it does not de-
pend on A. The loss function (4) can also be obtained
from nonlinear infomax, maximum likelihood estima-
tion, and mutual information minimization. Popular
ICA algorithms were derived from the minimization
of the loss function (4) using the natural gradient [1].
The adaptation algorithm for the mixing matrix A (see
[1, 11] for more details) has the form

AA = —nA {1 - (,o(é)éT} , (5)

where 7 > 0 is a learning rate and 8 = A7 'z. The
element-wise nonlinear function ¢(-) is identical to the
negative score function in ML estimation.

In the conventional ICA algorithms, one important
thing lies in how one selects the nonlinear function ¢(-)
whose optimal form depends on the probability distri-
bution of source which is unknown in advance. It is nec-
essary to employ the hypothesized density in a smart
way [10].

3. CORRELATION MATCHING
APPROACH

For nonstationary sources, their variances are slowly
time varying. Thus only multiple correlation matri-
ces instead of probability density function allows us to
perform the BSS task. In this section we describe two
different algorithms.

3.1. Mixing Matrix Estimation

Let us denote by R (k) the correlation matrix of ob-
servation vector x(t) calculated using the samples in
the kth time-windowed data frame. In the same man-
ner we define the model correlation matrix by R, (k) =
AR,(k)AT. Note that the correlation matrix of source
vector, Ry(k) is a diagonal matrix forall k =1,... , K
where K is the number of frames.

Then we define the error between the correlation
matrix of observed signals and the model by

E(k) = R, (k) - Ry (k), (6)

fork=1,... K.
When E(k) = 0 (i.e. correlation matching is achieved)
for k =1,7 (i #J), we have

i

R (i) AR,(i)A”, (7)
Ry(j) = AR,(j)A". (8)

There exists a closed-form solution for A which satis-
fies (7) and (8). In such a case, the mixing matrix A
can be estimated by solving the generalized eigenvalue
problem

R [R3()] ™ A = AR,(§) [R,(j)] " 9)

The A that satisfies (9) is a solution to the task of
BSS, if all the diagonal elements of R,(i) and R;(5)
are distinct [9]. In practice, however, it is not clear
which ¢ and j guarantee the condition that R(¢) and
R, (j) have distinctive diagonal elements.

In order to overcome this drawback, we consider
multiple data frames, i.e., K > 2. The cost function
that we consider here is

J = itr {E(k)ET(k)} , (10)

k=1

where tr{-} represents the trace operator. In order to
avoid degenerate solutions, the optimization of the cost
function (10) should be carried out under some con-
straints. One simple constraint is to restrict all the
diagonal elements of the estimate of A to be unity [15].

The LS estimate of the mixing matrix is obtained
by minimizing the cost function (10). In order to find
the minima of the cost function (10), we compute the
gradients with respect to the corresponding parameters
which are given by

8 -
q - —4;E(k)ARs(k), (11)
5—%7@ = -2diag{ATE®A}. (12)
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The LS estimate of the mixing matrix A and source
correlation matrix R,(k) are computed iteratively by
gradient descent method.

We can avoid the constraint that [A]; = 1 for
i = 1,...,n by pre-whiten the observation data. Us-
ing the samples at whole frames we compute the sam-
ple correlation matrix R, = UAU” where U and A
are eigenvector and eigenvalue matrices. The whiten-
ing transformation matrix @ is Q = A~3UT. For the
sake of simplicity we assume that the observation data
is already whitened by a transformation Q. In such a
case the problem of BSS is to find a orthogonal mixing
matrix. This can be done using the method of gradient
in orthogonality [2]. Algorithm Outline

(1) Here we assume that the observation data x is al-
ready pre-whitened. Thus the mixing matrix A
is an orthogonal matrix.

(2) The A is adapted by the gradient descent method
in orthogonality constraint

87 aT\"

(3) The model source correlation matrix is updated
by the conventional gradient method that has the
form

AR, (k) = ndiag{ATE(k)A} , (14)
fork=1,...,n.

3.2. Demixing Matrix Estimation

Now we consider a demixing model that is described
by

y(t) = Wa(t), (15)
where W is the demixing matrix. Then we have
R, (k) = WR.(k)WT. (16)

We define the error between the correlation matri-
ces of the estimated source vector y and model source
vector s,

E(k) = WR,(k)WT — R,(k). (17)

Then the correlation matching principle leads to the
following optimization function

K
J=> tr{E(k)E(k)"}. (18)
k=1

In fact the correlation matching method seeks for
W that jointly diagonalizes R, (k) for K different frames
The gradients are

87 X
o = 4;E(k)WRm(k), (19)
5}% = _2diag{E(k)}. (20)

We can find the LS estimate of the demixing matrix W
using the same method as the one described in Section
3.1.

4. NUMERICAL EXAMPLE

A simple numerical example is presented. For sources,
we have used two digitized speech signals sampled at
8 kHz (see Figure 4). Two mixture signals (see Figure
4) were generated using the mixing matrix A given by

0.7 1 (21)

A [ 1 09 J
The methods described in previous section were ap-
plied to estimate the mixing matrix and recover two
original speech signals. The observation data was par-
titioned into 10 nonoverlapping frames. The learning
rate 5 = 0.001 was used. The recovered speech signals
were shown in Figure 4. In contrast to most methods of
ICA, here we used only multiple correlation matrices to
estimate the mixing matrix and were able to success-
fully recover the source signals without knowing the
mixing matrix nor sources.

Figure 1: Original speech signals.

5. CONCLUSIONS

We have presented efficient iterative algorithms for blind
separation of nonstationary sources. Our method re-
quires only multiple correlation matrices in contrast to
most existing BSS algorithms. In the framework of cor-
relation matching we described how the mixing matrix
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Figure 2: Mixture signals.

Figure 3: Recovered speech signals

or the demixing matrix could be estimated. Iterative
algorithms were developed using the gradient descent
method in orthogonality constraint and their perfor-
mance were confirmed by numerical experiments.

Although we considered only noiseless mixtures, our
method can be extended to the case of noisy mixtures.
Currently we are working on noisy BSS problem in the
framework of correlation matching.
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