Proceedings of ITC-CSCC 2000, Pusan, Korea

Ranking Query Processing in Multimedia Databases

Byung-Gon Kim*

Joung-Woon Han*

Jaeho Lee** Haechull Lim*

*Department of Computer Engineering, Hong-Ik University
Mapo-Gu Sangsoo-Dong 72-1 Seoul, Korea 121-791
Tel) +82-2-320-1673 Fax) +82-2-320-1105
E-mail : {bgkim, hanjw, lim}@cs.hongik.ac.kr

**Department of Computer Education, Inchon National University of Education
Gyeyang-Gu Gyesan-Dong San59-12 Inchon, Korea 407-753
Tel) +82-32-540-1281 Fax) +82-32-548-0288
E-mail : jhlee@mail.inue.ac.kr

Abstract: Among the multi-dimensional query
types, ranking query is needed if we want the object one
by one until we satisfy for the result. In multi-
dimensional indexing structures like R-tree or its variants,
not many methods are introduced in this area. In this
paper, we introduce new ranking query processing
algorithm which use the filtering mechanism in the R-
tree variants.

1. Introduction

Much of the research on query processing of multi-
dimensional data has focussed on two aspects; namely,
range query and nearest-neighbor query(nnq). Range
queries retrieve information regarding all objects within
a certain distance from the query object, while the
nearest-neighbor query finds the object closest to the
query object. A variation of the nearest-neighbor
query(nnq) is the k-nearest neighbor query(k-nnq) where
it finds the k neighbors closest to the query object.
Another important query type needed for multi-
dimensional databases is ranking query. Ranking query
is a similarity query that works based on a “give-me-
more” facility. Give-me-more facility is frequently used
in spatial databases. For example, we may wish to find
the closest city from LA that has over 10 million
populations in the database. In this case, if we use
ranking query processing technique, we can check the
population of the city one by one in the order of distance
from LA until we meet the city that satisfies the
condition. However, in case of existing nnq or k-nnq
algorithm[4], though it has ordering and pruning
strategies, it have to restart the search from the beginning

to get the next city if we do not satisfy for the first result.
In this paper, we describe the existing ranking query
processing algorithm in R-tree variants environment and
introduce new ranking query processing algorithm to
overcome the problem of the existing algorithm.

2.Related Works

2.1 Ranking query algorithm

The algorithm of ranking query was introduced in the
context of 2-dimensional geographic information
systems and works on PMR quadtrees[2]. This ranking
query algorithm on R-trees used for optimal multi step k-
nnq processing[7] was adapted from [2]. The ranking
query algorithm used priority queue and used minimum
distance(MINDIST) to order the priority queue. In the
queue, three kinds of items can exist. Those are directory
node, data node, and real object. After popping the first
clement in priority queue ordered by MINDIST, if the
first element is directory node, for each child node of the
node, compute the distance from a query object and
reinsert to the queue. If the first element is data node, for
cach object of the node, compute the distance and
reinsert objects to the queue in the order of distance.
Lastly, if the first element is object, report the object.

However, ranking query algorithm used in this
algorithm does not have leaf node filtering ability. To
acquire the nearest object from the queue, after popping
the leaf node of the queue, distance computation of all
objects of the leaf node must be performed.

Next problem of this algorithm is that it uses a
priority queue. Priority queue in this algorithm retains
objects, leaf nodes, and intermediate nodes according to

their distances to the query point so that it needs heap
change whenever the new item is inserted. As the
indexing nodes and the objects of the tree grow, the
system can be affected by the change overhead.
Minimizing the heap management overhead of the
priority queue is the important factor of the algorithm.

2.2 Tree Structures Using Vantage Point

Uhlmann introduced VP-tree for the k-nearest
search[3]. VP-tree basically partitions the data space into
spherical cuts around a chosen vantage point(VP). VP is
a point chosen among the data points that is used for
computing the relative distances from all the other points.
At each node, the distances between the VP for that node
and data points to be indexed below that node are
computed. VP-tree keeps the different VP for each node
at the same level. When the median value among the
distances is found, the data points are partitioned into
two groups. One of them contains the points whose
distances to the VP are less than or equal to the median
and the other group contains the points whose distances
to the VP are larger than to the median. These two
groups of data points are indexed separately by the left
and right sub-branches below that node, which are
constructed in the same way recursively. Although VP-
tree can be generalized into a multi-way tree for larger
fanouts, when the spherical cuts are very thin, the
chances of a search operation descending down to more
than one node becomes higher. It can be a overhead in
the system.

To overcome this weakness, an interesting approach
for finding the k-nearest neighbors in the MVP-tree was
proposed by Bozkaya and Ozsoyoglu[6]. To find the k-
nearest neighbor in the MVP-tree, like the VP-tree, an
index structure is composed based on the distances from
a specific vantage point(VP). However, the MVP-tree
uses more than one vantage point to partition the space
into spherical cuts at each level so that it keeps higher
discrimination ability. Especially, in the MVP-tree, the
pre-computed distances between the data point and the
VPs along the path from the root to the leaf node are
contained in the array. These informations are used for
leaf node filtering in the query processing. This filtering
concept can reduce the object distance computation time
in the query processing.

The MVP-tree contains a filtering capability to reduce
computations, but, due to its static nature, it is
inappropriate for situations where insertions and

deletions to the index structure is frequent. Based on
these observations, we propose ranking query processing
technique using VP filtering that utilizes the filtering
technique of MVP-tree, but on the R-tree[1].

3. Ranking Query Processing Using Filtering

To perform ranking query with filtering, indexing tree
with VP distance value must be constructed.
Construction indexing trees (for R-tree variants such as
the R-tree, R*-tree, X-tree) that contains vantage point
(VP) values is essentially the same as constructing a tree
without the VP value. The only extra step that is required
is in deciding the VP.

Selecting a VP using one of the many choices may
possibly have varying implications on the performance of
our method. However, this is an issue that needs to be
dealt separately. Hence, in this paper, we simply select
the corner point of the domain space as the VP as this
saves tree construction time. Once the VP is decided, we
compute the distance between the VP and each object,
and store their value as they are inserted into the R-trees.
Note that these distances are absolute values and only
need to be computed once when the objects are inserted.
They are not affected by the change of the tree structure.
The distance is contained as an entry of the leaf node
along with the object pointer. Except for containing the
distance to the VP, tree construction method is the same
as the original R-tree variant structures.

The main idea behind VP filtering is that objects may
be divided into two groups where in one group, distance
computations of objects are computed, while for the
other group most of these computations are delayed. This
filtering is based on the VP values of the objects. This is
possible as ranking query, by nature, requests objects in
an incremental manner. The two groups are maintained in
two separate queues, that we denote as the Return_queue
and Delay_queuc. Filtering is done as follows.

At first, we use the metric MINMAXDIST[4]
mentioned. This notion guarantees the presence of an
object in rectangle R whose distance is within
MINMAXDIST. As there exists one or more objects
within MINMAXDIST distance from query point Q,
initially, only those objects within MINMAXDIST are
considered for distance computation.

Whether the objects in the leaf node are within the
MINMAXDIST or not is determined by two filtering
conditions. In the first filtering condition, we use the VP
distance retained in the object entry. That is, we perform

— 295 —

distance computations only for those objects that lie
between d(VP,Q)-MINMAXDIST(Q,M) and d(VP,Q)+
MINMAXDIST(Q,M) where Q is the source of the
query and M is the leaf node being considered. This is
the light-shaded area between the two arcs denoted as
'First filtering boundary' in Figure 1.

Among these objects, second filtering condition is
considered. The second filtering condition is required to
resolve a problem like this. Note that with just first
filtering condition there can be situations where objects
which lie over MINMAXDIST(Q,M) are included in the
distance computation. For example, in Figure 1, the
object denoted as 'f, in fact, that does not lie within
MINMAXDIST may be included in the result of the first
filtering. This second filtering is done using
MINMAXDIST(Q,M) and real distance of the object
which is computed in the first filtering.

—_ MINMAXDIST(Q,M)
First filtering boundary ~~_ bl

S

A
Second filtering bound 1

VP \

D(VP,Q)-MINMAXDIST(Q,M)
Figure 1. Filtering concept of ranking query algorithm

From the first result, those objects that satisfy the
condition d(f,Q)<MINMAXDIST(Q,M) which are
objects in the area within the circle denoted as the
'Second filtering boundary', are moved to the
Return_queue and others are moved to Delay queue.
Hence, only those objects within the dark shaded area in
Figure 1 are left in the Return_queue. The objects in this
area form an ordering by the distance from the query
point Q. The rest of the objects, without most of their
distances computed, are put into the Delay_queue.

Aside from the aforementioned two queues, a third
Main_queue, which retains only leaf and intermediate
nodes is also maintained. This is different from the
existing method, which maintains only a single queue.

All three queues are maintained via a priority queue

though the ordering criteria is all different; the
Return_queue is based on the distance from the query
point, the Main_queue is based on MINDIST, and the
Delay_queue has no special ordering,.

Returning an object occurs only from the
Return_queue. Upon a request the distance of the first
object in the Return_queue is compared with MINDIST
of the first node of the Main_queue. If the distance is
smaller than MINDIST, the object can be returned in
answer to the request. If not, this means that an object of
the first node of the Main_queue may be closer to Q, and
so, the node is popped in order to find the nearest object.
When the popped node of the Main queue is an
intermediate node, each child of that node is inserted to
the Main_queue according to their distance to the query
point Q. When the popped node of the Main_queue is a
leaf node, for each child object of the node, two filtering
conditions mentioned above are checked, and the objects
are sent to either the Return_queue or the Delay_queue.
At this time, to guarantee the consistency of the
Return_queue, if the distance of the farthest object of the
Return_queue is shorter than the distance of the farthest
object of the popped leaf node that satisfy the filtering
conditions, only the objects of popped leaf node which
are shorter than or equal to the distance of the farthest
object of the Return_queue are sent to the Return_queue.
If not, to the Delay queue, objects of the Return_queue
are moved which are farther than the distance of the
farthest object of the popped leaf node that satisfy the
filtering conditions and, to the Return_queue, all objects
of the popped leaf node that satisfy the filtering
conditions are sent. Next, a response is then returned
from the updated Return_queue.

4. Experiments

For the ranking query algorithm, we constructed the
12, 27 dimensional indexing R-*tree using 50,000
images. We measure the return time of up to 1000 object,
starting from the closest to the furthest, one object at a
time. Results are compared with existing ranking query
algorithm. For 12 dimensional index tree, when using VP
filtering, the return time is ,slightly but always, shorter
than without filtering as presented in figure 2.

296

——without VP filtering —— with VP }ilt;aring 3

N
(@]

—
[¢)]
1

[o)]

Return time{sec)
o

(@]

1

0 W N O O MO~ — O W
~ 0 M O O S - O~ TN
— N DM WO O NS00 o

number of returned nearest neighbor

Figure 2. 12 dimensional data return time comparison

As shown in figure 3, in 27 dimensional data,
proposed ranking query technique shows much better
performance improvement than 12 dimension. That
means that as the dimension grows, the gain from the
new algorithm is increased.

—without VP filtering '—“""'77WIthi/7Pfl|iérilng

< 120 R
$ 100 -

T 80

E 60

c 40

2 20

o

0

A MO N~ — 0 O MmN~
< N OSSO0 T - W
— N N M T W O~

— W
~
number of returned nearest neighbor

Figure 3. 27 dimensional data return time comparison

5. Conclusions

In this paper, we proposed a new ranking query
processing technique using VP filtering for R-tree
variants. It utilizes the filtering concept of the MVP-tree,
but retains the dynamic characteristics of the R-tree. The
only overhead of this VP filtering mechanism, which is
insignificant and non-existent during query processing
time, is the VP distance computation time of objects
during tree construction time. This computation is
required only once for each of the objects. Experiments
show that significant performance gains are obtained
compared to previously existing algorithm.

ACKNOWLEDGEMENTS
This research is supported by KOSEF (Korea Science
and Engineering Foundation) under grant no. 98-0102-
0901-3.

References

[1] Antonin Guttman. "R-Trees: A Dynamic Index Structure for

Spatial Searching”, Proceedings of the ACM SIGMOD
Conference, pages 47-57, 1984.

[2] Flip Korn, NikolasSidiropoulos, Christos Faloutsos, Eliot
Siegel, and Zenon Protopapas, "Fast Nearest Neighbor
Search in Medical Image Databases", Proceedings of the
VLDB Conference, pages 215-226, 1996.

[3] Jeffrey K. Uhlmann, "Satisfying General
Proximity/Similarity Queries with Metric Trees",
Information Processing Letters, Vol. 40, pages 175-179,
1991.

[4] Nick Roussopoulos, Stephen Kelley, and Frederick Vincent,
"Nearest Neighbor Queries", Proceedings of the ACM
SIGMOD Conference, pages 71-79, 1995.

[5] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and
Bernhard Seeger, "The R*-Tree: An Efficient and Robust
Access Method for Points and Rectangles”, Proceedings of
the ACM SIGMOD Conference, pages 322-331, 1990.

[6] Tolga Bozkaya and Meral Ozsoyoglu, "Distance-Based
Indexing for High-Dimensional Metric Spaces”,
Proceedings of the ACM SIGMOD Conference, pages 357-
368, 1997.

[7] Thomas Seidl and Hans-Peter Kriegel, "Optimal Multi-Step
k-Nearest Neighbor Search”, Proceedings of the ACM
SIGMOD Conference, pages 154-165, 1998.

— 297 —

