Proceedings of ITC-CSCC 2000, Pusan, Korea

Efficient Implementation of CG and CR Methods for Linear Systems on
a Single Processing Node of the HITACHI SR8000

S. Nishimura, D. Takahashi, T. Shigehara, H. Mizoguchi and T. Mishima

Department of Information and Computer Sciences, Saitama University
Shimo-Okubo 255, Urawa, Saitama 338-8570, JAPAN
Phone: +81-48-858-9035, Fax: +81-48-858-3716
E-mail: seiji@me.ics.saitama-u.ac.jp, {daisuke,sigehara}@ics.saitama-u.ac.jp

Abstract: We discnss the iterative methods for linear
systems on a single processing node of the HITACHI
SR8000. Each processing node of the SR8000 is a shared
memory parallel computer which is composed of eight
RISC processors with a pseudo-vector facility. We im-
plement highly optimized codes for basic linear opera-
tions including & matrix-vector product and apply them
to the conjugate gradient (CQG) and the conjugate resid-
ual (CR) methods for linear systems. Our tuned codes
for both methods score nearly 50% of the theoretical
peak performance, which is the best in the sense that it
corresponds to an asymptotic performance of the inner
product.

1. Introduction

The significance of a large-scale numerical computation
is rapidly growing in the various scientific and techno-
logical fields such as fluid dynamics and quantum chem-
istry. In particular, high performance solvers for linear
systems are highly desired because the problem is fre-
quently turncd into linear systems after a suitable dis-
cretization of space and time coordinates.

Automatic tuning is a recent trend of linear algebra
library. ATLAS (Automatically Tuned Lincar Algebra
Software) [1] is a typical example. However, such li-
brary is mainly intended for scalar processors. There is
no instance intended for vector or pseudo-vector (2, 3]
processors. To remedy the situation, we implement in
this paper fundamental routines from BLAS (Basic Lin-
ear Algebra Subprograms) [4-7] and develop highly op-
timized code of the conjugate gradient (CG) [8] and
conjugate residual (CR) [9] methods on the HITACHI
SR8000, which is one of up-to-date parallel supercom-
puters. We restrict ourselves to a single processing node
in this paper. A single processing node of the SR8000 is
a shared memory parallel computer which is composed
of eight RISC processors with a pseudo-vector facility.

The paper is organized as follows. Experimental en-
vironment is summarized in Sect.2. We show in Sect.3
the performance of the basic linear operations including

an optimized matrix-vector product, which is applied to
the CG and CR methods in Sect.4. The current work
is summarized in Sect.5.

2. Experimental Environment

We summarize experimental environment of this work
and also give specifications of the HITACHI SR8000.
Numerical experiments were performed at the Com-
puter Centre Division, Information Technology Center,
the University of Tokyo. The SR8000 system is com-
posed of 128 processing nodes interconnected through
a three-dimensional hyper-crossbar network. Each pro-
cessing node is a shared memory parallel computer with
eight RISC processors (Instruction Processor, IP) with
a pseudo-vector facility. Each IP has two multiply-add
arithmetic units with machine cycle of 4[nsec]. As a
result, the total theoretical peak performance of each
processing node is 8{GFLOPS]. Each IP is designed to
achieve a similar performance to a vector processor by
adopting a pseudo-vector facility, which serves to sup-
press a delay caused by cache misses.

We use a single processing node for numerical exper-
iments. The prograinming language is FORTRANTY.
The compile options are “-64 -nolimit -noscope
-Oss -procnum=8 -pvfunc=3". These options instruct
the compiler to use 64-bit addressing mode (“-64"),
to remove limits of memory and time for compilation
{“-nolimit”), to forbid dividing a source code into mul-
tiple parts when it is compiled (“~-noscope”), to set the
optimize level to the highest (“~0ss”), to use eight [P’y
(“~procnum=8”) and to set the pseudo-vectorize level
to the highest (“-pvfunc=3"), respectively. We also
give the compiler directives concerning a parallelization
among IP’s [10].

3. Vector Operations and Optimized
Matrix-Vector Product

We begin with basic vector operations in Table 1, which
are often used to solve linear systems. In Table 1, x

— 208 —

Table 1: Basic vector operations.

| Name in BLAS || Function I
daxpy yi=Yy+ax
ddot (x,y)
dnrm2 x|l = /(x,x)
dscal X = aX
7000 T T T T T T
“daxpy" —+—
“ddot’ ---x-—-
"dnrm2” - %
8000 ~ "dscal o]
*- oo, PO S
- R
£ 5000 - * 4
&}
T ¥
£
£ 4000 | E
2 AN
i FERN
4 * X e AR R
@ 3000 | A Saenn T J
g
5
£
$
S 2000 | J
& /‘\/4.4,_—»——+~4——¢-—+
T 7
1000 |- 4
o . . . , . ; L
10 12 14 16 18 20 22 2

Problem Size : K (n=2"k)

Figure 1: Performance of basic vector operations in Ta-
ble 1.

and y are n-dimensional real vectors and « is a real
scalar. The source code of these routines is implemented
with the same interface as in BLAS. The vector oper-
ations in Table 1 are written in a single loop which is
pseudo-vectorized and parallelized with a block distri-
bution {10]. Fig.1 shows the performance of the basic
linear operations. The vertical axis shows the perfor-
rmance in units of MFLOPS, while the horizontal axis is
& = log, n with the problem size n. Note that since the
kernel loop is performed on eight IP’s in parallel, the
loop length on each IP is n/8.

It is clear that the ratio between arithmetic opera-
tions and data operations in the kernel is one of the most
important factors to keep good performance. From a
viewpoint of the arithmetic operations, the Euclidean
norm dnrm?2 is thc same as the inner-product ddot.
However, dnrm2 is about 1.6 times faster than ddot.
This is due to the fact that the statement s := s 4+ z;y;
requires two load and one multiply-add operations. As a
result, the performance of ddot is at most 4{GFLOPS],
namely 50% of the theoretical peak performance of a
single processing node. On the other hand, dnrm2 re-
quires only one load operation for a single multiply-add
operation. This explains the ratio of the performance
between dnrm2 and ddot. One can also observe that

* at(j,i)=a(i,j), (i=1,...
do 10 i=1,m-1,2
dtmp1=0.d0
dtmp2=0.d0
do 20 j=1,n
dtmpl=dtmpl+at(j,i J)*v(j)
dtmp2=dtmp2+at (j,i+1)*v{(j)
20 continue
u(i)=dtmpl
u(i+1)=dtmp2
10 continue

,m, j=1,...,n)

Figure 2: FORTRAN source code for matrix-vector
product. Loop-unrolling to a depth of two is employed
for outer loop. Additional statements are required if m
is odd.

ddot is almost twice faster than daxpy. This is because
daxpy requires a store operation after two load and one
multiply-add operations, which is unnecessary for ddot.
Similarly, dscal requires a store operation after one load
and one multiplication operations. Thus, the ratio of
arithmetic operations to data operations is the smallest
in dscal. This is the reason why the score of dscal is the
poorest in Fig.1.

One can sec that the performance of the opcrations
for a single vector (dnrm2 and dscal) is saturated at
k = 17, since the data cache memory for each pro-
cessing node is 128[KB/IP] x &[IP] in the SR8000.
For the operations for two vectors (dnrm2 and dscal),
the saturation occurs around a half of the problem
size; k = 15 ~ 16. For each operation, the perfor-
mance is kept at a high level even for a larger prob-
lem size, owing (0 a pseudo-vector facility In an asymp-
totic region (k = 24), the performance of daxpy, ddot,
dnrm2 and dscal is 1755.6]MFLOPS], 3359.8 MFLOPS],
5565.5[MFLOPS] and 1322.6{MFLOPS], respectively.

In order to keep good performance at each step of
iterative solutions for linear systems, it is crucial to de-
velop a highly optimized code for matrix-vector prod-
uct. Fig.2 shows a double loop for matrix-vector prod-
uct. We parallelize the outer loop with a block distribu-
tion and also pseudo-vectorize the inner loop for vector
inner product. In Fig.2, we use the transposed matrix
AT instead of A. (The elements of AT can be overwrit-
ten on the original A in an actual implementation, since
one uses A only in a form of the matrix-vector product.)
Since the matrix is stored by columus in FORTRAN,
the continuous memory access to the matrix elements
of 4 is ensured by using the transposed matrix A7. We
also employ loop-unrolling to a depth of two for the
outer loop. For the inner loop, we leave the unrolling
to the compiler, as in vector operations. As a result,
the inner loop is unrolled to a depth of four. The loop-
unrolling to a depth of two of the outer loop makes it

4000 | I

3500 |

3000 | / E

2500 |-/ g

2000 | B

1500 ~ 4

Performance of the SRB000 [MFLOPS}

1000 | E

0 : 1 s L L
[d 1000 2000 3000 4006 5000
problem size 1 n

L s L
8000 7000 8000

Figure 3: Perforinance of optimized matrix-vector prod-
uct in Fig.2. Outer loop is performed among 8 IP’s in
parallel. Inner loop is pseudo-vectorized on each IP.

possible to reduce the number of load operations for the
vector v to the half in the inner loop. As well, the length
of the outer loop is reduced by 50%. As a result, the
performance is improved by about 10%.

Fig.3 shows the performance of the tuned matrix-
vector product. One can see that the curve in Fig.3
reproduces the performance of the inner product ddot
in Fig.1. This is mainly due to the use of the trans-
posed matrix to keep a continuous memory access. Re-
call that since the loop for vector operations in Fig.1
is parallelized among eight IP’s, each IP processes only
one eighth of the vector elements. Thus, Fig.3 should be
compared with the performance of ddot for £ = 12 ~ 16
in Fig.1.

We have examined unrolling of the outer loop to
depth greater than two in numerical experiment. The
performance for a depth of four is almost the same as
for a depth of two, while a depth of eight gives rise to
only 10% performance compared to the case of a depth
of two. A depth of eight is too large to store relevant
elements in the floating-point registers on each IP.

4. CG and CR Methods

In this section, we discuss the implementation of CG
and CR methods on a single processing node of the
SR8000. The CG method (8] is one of typical iterative
methods for a linear system Ax = b. The algorithm of
CG method is shown in Fig.4. It can be verified that if
the coefficient matrix A is symmetric and positive def-
inite, then the approximate solution converges to the
exact solution within n iterations for any initial guess.
Here, n is the number of unknowns. Owing to this the-
orem, the CG method is usually applied to the case

Take an initial guess xq;

ro := b — Axy; po = ro;
for k:=0,1,2, - - until ||rg]| < ¢|/b]| do
begin
ar = (rr,Pr)/ Pk, APk);
Xg4+1 T X+ QP
Tk1 = T — QpApy;
Br = —(tiq1, APr)/(Pr: APr)s
Pi+1 = Tpytr + BePi;
end

Figure 4: Algorithm of CG method.

Take an initial guess xo;

ro :=b — Axg; po:=ro; q:= Apo;

for k:=0,1,2,--- until ||rg]| < ¢||b]] do
begin

o= (q.q);
ar = (rgq)/p
Xpt 1 X + . Pk;
Tpt1 = Ty — opQ;
a = Argyr;
B = —(@.aq)/m
Pitl = Tgpr + Brbi;
q = a+/hq;

end

Figure 5: Algorithm of CR method.

when A is a positive definite symmetric matrix. The
CR method [9] is another efficient algorithm for solving
linear systems. It can be applied even for asymmetric
problems. The algorithm of CR method is shown in
Fig.5. A remarkable feature of the CR method is that
the residual decreases monotonically if the symmetric
part of the coefficient matrix A, i.e. (A+A47)/2, is pos-
itive or negative definite. One can see fromn Figs.4 and
5 that a dominant part in calculation at each iteration
is a single matrix-vector product both for the CG and
CR methods.

In this study, we restrict ourselves to a dense lin-
ear system. The iterative methods are important even
for dense linear systems. since the convergence is of-
ten attained within a relatively small number of itera-
tions [11,12]. In numerical experiment, we use A = (a;;)
with a;; = max{i.j}, (1, = 1,2,---,n) as the coeffi-
cient matrix. Fig.6 shows the performance of the CG
and CR methods for the problem size n = 256 x i; @ =
1,2,---,32. The behavior of both curves is quantita-
tively explained by the performance of matrix-vector

5000 T T T T T T T T
cg" —-H o~
‘er --x
4500
4000 B
g TR T
,~tjﬁj_:§4—« ”‘»%>\3;:;;:f;:?*t:}

3500 e E
Ve
3000 | J

2500 > B
2000 -~ B

1500 -

Performance of SR8CO0 MFLOPS)

1000 - -

500 B

0 L L L) 1 L L L
0 1000 2000 3000 4000 5000 6000 7000 8000
Problem Size : n

Figure 6: Performance of CG and CR methods.

product in Fig.3. For n = 8192, the performance
of the CG and CR methods is 3785.8]MFLOPS] and
3729.2[MFLOPS], respectively. They are close to the
asymptotic performance of ddot subroutine, nearly 50%
of the peak performance of a single processing node of
the SR8000. If we use a standard matrix-vector product
without using the transposed matrix, the performance
is at most 2700[MFLOPS], which we have checked in
experiment.

5. Summary

We have implemented the highly optimized codes of
matrix-vector product and applied it to the CG and CR
methods for linear systems on a single processing node
of the HITACHI SR8000, which is a shared memory
parallel computer composed of eight IP’s with a pseudo-
vector facility. The performance of the tuned CG and
CR methods is nearly 4{GFLOPS], which amounts to
the peak performance for the vector inner product on
a single processing node of the SR8000. In a future
work, we shall (1) develop the optimized code for iter-
ative methods with compressed row storage [13] on the
SR8000, and (2) extend the present work to multiple
processing nodes.

References

[1] R. C. Whaley and J. J. Dongarra, “Automatically
Tuned Linear Algebra Software,”
http://www.netlib.org/atlas/atlas.ps.gz.

(2] K. Nakazawa, H. Nakamura, H. Imori and S.
Kawabe, “Pseudo vector processor based on
register-windowed super-scalar pipeline,” Proceed-
ings of Supercomputing ’92, pp.642-651, 1992.

(3]

[6]

[11]

[12]

[13]

— 301 —

K. Nakazawa, H. Nakamura, T. Boku, I. Nakata
and Y. Yamashita. “CP-PACS: A massively paral-
lel processor at the University of Tsukuba,” Paral-
lel Computing, vol.25, pp.1635-1661, 1999.

C. Lawson, R. Hanson, D. Kincaid and F. Krogh,
“Basic Linear Algebra Subprograms for Fortran
Usage,” ACM Trans. on Math. Soft., vol.5, pp.308-
325, 1979.

J. J. Dongarra, J. DuCroz, S. Hammarling and R.
Hanson, “An Extended Set of Fortran Basic Lin-
ear Algebra Subprograms,” ACM Trans. on Math.
Soft., vol.14, no.1, pp.1-32, 1988.

J. J. Dongarra, 1. S. Duff, J. DuCroz and S. Ham-
marling, “A Set of Level 3 Basic Linear Algebra
Subprograms,” ACM Trans. on Math. Soft., vol.16,
no.1, pp.1-17, 1990.

J. J. Dongarra, 1. S. Duff, D. C. Sorensen, and
H. A. van der Vorst, “Solving Linear Systems on
Vector and Shared Memory Computers,” SIAM,
Philadelphia, 1991.

M. R. Hestenes and E. Stiefel, “Methods of conju-
gate gradients for solving linear systems,” Journal
of Research of the National Bureau of Standards,
vol.49, pp.409-436, 1952.

A. Greenbaum, “Iterative methods for solving lin-
ear systems,” SIAM, Philadelphia, 1997.

S. Nishimura, D. Takahashi, T. Shigehara, H. Mi-
zoguchi and T. Mishima, “A Performance Study
on a Single Processing Node of the HITACHI
SR8000,” Proceedings of Second Conference on
Numerical Analysis and Applications, Russe, Bul-
garia, June, 2000, to appear. -

M. Yokoyama, T. Shigehara, H. Mizoguchi and T.
Mishima, “Efficiency of the CR method for solv-
ing large-scale dense linear system on distributed
memory parallel computers,” Proceedings of ITC-
CSCC’98, pp.1219-1222, Sokcho, Korea, 1998.

M. Yokoyama, T. Shigehara, H. Mizoguchi and T.
Mishima, “Iterative methods for dense linear sys-
tems on distributed memory parallel computers,”
IEICE Trans, vol.E82-A, no.3, pp.483-486, March,
1999.

R. Barrett et al., “Templates for the solution of
linear systems: building blocks for iterative meth-
ods,” SIAM, Philadelphia, 1996.

