Proceedings of ITC-CSCC 2000, Pusan, Korea

Load Balancing Strategies for Network-based Cluster System

Hoon Jin Jung

Choung Shik Park Sang Bang Choi

Dept. of Electronic Engineering, Inha University
253 Younghyun-Dong, Nam-Gu, Inchon, 402-751, Korea
Tel: +82-32-860-7417, Fax: +82-32-868-3654
Email:sangbang@inha.ac.kr

Abstract: Cluster system provides attractive scalability in
terms of computation power and memory size. With the
advances in high speed computer network technology, cluster
systems are becoming increasingly competitive compared to
expensive parallel machines. In parallel processing program,
each task load is difficult to predict before running the
program and each task is interdependent each other in many
ways. Load imbalancing induces an obstacle to system
performance. Most of researches in load balancing were
concerned with distributed system but researches in cluster
system are few. In cluster system, the dynamic load
balancing algorithm which evaluates each processor's load in
runtime is purpose that the load of each node are evenly
distributed. But, if communication cost or node complexity
becomes high, it is not effective method for all nodes to
attend load balancing process. In that circumstances, it is
good to reduce the number of node which attend to load
balancing process. We have modeled cluster systems and
proposed marginal dynamic load balancing algorithms suitable
for that circumstances.

1. Introduction

Recently, the introduction of high performance
microprocessor technology and high speed network
equipment is toward cluster systems which have cheep
price and high performance. Some examples of cluster
systems are NOW(Network of Workstations), Beowulf,
HPVM(High Performance Virtual Machine) and Solaris-
MC. Such systems use SPMD(Single Program Multiple
Data) programming style, which enables the same code
to run on several processing nodes while the data
space is partitioned among them. The libraries such as
MPI(Message Passing Interface) and PVM(Parallel
Virtual Machine) are supporting SPMD programming
framework.

Nowadays, the cluster system is in positioned
between MPP(Massively Parallel Processors) and
distributed systems. The number of node for cluster
systems are usually around 100, and it's network
framework have a switching topology[1]. The cluster
system usually use Fast Ethernet for low cost but use
ATM, Gigabit Ethernet, Myrinet and SCI network
equipment for high performance with expensive cost.

Main obstacle to performance in the cluster
system is load imbalancing like parallel computers
doing. The cluster system is similar with
loosely-connected MPP system. So the communication

overhead is more than MPP. Therefore, it needs more

effective load balancing algorithm which has low
communication overhead.
In this paper, we proposed marginal dynamic

load balancing which is suitable for cluster system.
And we showed that it is better than existing load
balancing algorithms.

2. The Cluster system

The cluster system is a type of parallel or distributed
system, which consists of a collection of interconnected
stand-alone computers working together as a single,
integrated computing resource[1]. A computer node can
be a single or multiprocessor system(PCs, workstations,
or SMPs) with memory, 1/O facilities, and an operating
system.

Cluster technology permits organizations to boost
their processing power using standard technology
(commodity hardware and software components) that
can be acquired at a relative low cost. The cluster
system is a new supercomputing architecture that have
advantages such as high performance, high availability,
high scalability and high throughput[1].

3. Load balancing in cluster system

Load balancing strategies minimize total execution time
of a single application under unexpectable dynamic
varying circumstances through load redistribution. They
are classified into static load balancing algorithms and
dynamic load balancing algorithms. Static load
balancing algorithms are task redistribution schemes
which make load balancing before application run, and
dynamic load balancing algorithms are task
redistribution schemes which make load balancing while
application is running. Generally, dynamic load
balancing algorithm is called load balancing algorithm.
So, the term, load balancing which is topic of our
thesis means dynamic load balancing.

Cluster system wusually supports SPMD style
programs. A large number of parallel programs belong
to this class: linear algebra problems, partial differential

— 314 —

equation solvers, image processing algorithms. Since the
workload on each processing unit is a function of the
number of elements contained in its sub domain, we
can keep the workload balanced by means of data
migrations from overloaded to underloaded nodes.

Cluster system for parallel processing can't use
absolute thresholds induced from CPU queue length,
CPU utilization, and I/O usage which is used in
existing distributed system. Therefore, cluster system
adopts the number of tasks in the run queue of each
node as basis for measuring the load[2].

In MPP systems which have high speed
interconnection network, the load balancing cost is low.
But in cluster system which have expensive
communication cost, we need effective load balancing
algorithm which have low overhead.

Fig. 1. shows a definition of nodes in load
balancing. We define maximum load that is number of
task which most overloaded node have. We define
minimum load that is number of task which most
underloaded node have.

We define average load that overall number of
task are divided by overall number of node. If we
divide the area from maximum load to average load
by one hundred, the margin rate o is percentage
distance from average load. Also we divide the area
from average load to minimum load by one hundred,
the margin rate S is percentage distance from average
load. Table 1 shows classification of nodes in load
balancing. Each node is included in the range.

Task migration of overloaded node is defined by
margin rate . And task migration of underloaded
node is defined by margin rate 8. So @ and B have
same value in order to match the number of migration
tasks.

Table 1. Classification of nodes.

overloaded node x > Average + (Max-Average) * a

middle overloaded Average < x < Average +

node (Max~Average) * a

middle node Average

middle underloaded

node

Average - (Average - Min) * 8 < x <
Avcrage

underloaded node x < Average - (Average - Min) * 8

Average: Average load value

Max: Maximum load value

Min: Minimum load value

x : Random nodes in this condition

Maximum load

verioadeg node

The range of midde
@ overnaded node

Average 1oad

ihe range of miske

unduruaited node

Minimum loaa

Fig. 1. A definition of nodes.

4. Load balancing process

Fig. 2. shows master-slave computation model. The
parallel programs simulated follow the master and slave
computation model, where a master task generates a
number of slave tasks[2]. Each slave task carries out
some processing and sends result back to the master.
After receiving the results from all the slaves, the
master task will terminate.

@ Master Node

g = g

Node Node Node Node

Slave Nodes

Fig. 2. Master-slave
computation model.

Cluster systems considered in this paper consist
of N homogeneous nodes and have switch-based
network. Master node is selected out randomly among
nodes and have additional jobs which distribute tasks
and gather results from slave nodes, processing own
task as one node. We assume that the communication
architecture of the switch-based network is the one-port
model. The one-port model restricts a node to
exchange messages with at most one node at a time.
We also assume that multicast is not supported in
hardware.

"The following 5 steps are performed in each load
balancing time[3].

1) Broadcast of Balancing Start:
broadcasts a message indicating the
balancing except itself.

Cmaxler = (N -1) X Cmsg

A master node
start of load

2) Collection of Global Information: Each slave node
send their load information to master node using global
gathering method.

Cresponxe = (N -1) x Cmsg

3) Migration node determination by margin policy:
Master node determines Average Load and chooses

—315—

overloaded nodes and underloaded nodes by Margin
policy. Two lists are created. First overloaded node list
is current node whose load is greater than ¢ margin
quota. Second underloaded node list is current node
whose load is smaller than A margin quota. The two
lists are sorted in the increasing order of load value
for task migration node matching.

4) Multicast for task migration: A master node
broadcasts migration instruction to each node. Both
overloaded node and underloaded node are received
this instruction. The middle nodes, the middle
overloaded node, and the middle underloaded node are
not included in communication cost because they don't
attend to load balancing process.
Cmaxler = (N -] - A/{) X Cmsg

5) Task migration: Each overloaded node sends
tasks to underloaded nodes. y is a excessive task
load. The cost of task migration is proportional to the
task's size. In order to synchronize, two additional Csg
cost is also added.
Cuask= unit time X the number of task
Cmig= (2 X Cmsg) + Clusk

Table 2. Simulation parameters for load balancing

load balancing .
Treriod . 1000 unit time
period
overall task sum of L
Tiowa 30000 unit time
program
a node information
Cmsg . 1~5% of E
sending cost
c communication cost
Tr ibetween master node| (N-1) X Crsg
Creceiuer
and slave nodes
c a task migration unit time X
sk
s cost the number of task
overall task
Cmig . . (2 X Cmsg) + Ctas‘k
migration cost
e, 5 load margin rate 10~40%
N the number of node | 31, 63, 127 nodes
the number
. x nodes
of margin node
S switch overhead Crsg X 14

5. Simulations & Results

In this paper, we studied dynamic load balancing using
a simulation model. We compared general dynamic
load balancing algorithms such as central dynamic load
balancing(CLB), decentral load balancing(DLB) with
our proposed marginal central dynamic load balancing

(MCLB) and marginal decentral dynamic load
balancing(MDLB). Table 2 shows simulation parameters
for load balancing. Existing implemented cluster
systems employ switch topology and group the nodes
by multiple of 2 such as 2, 4, 8, 16, 32, 64 nodes
group. So we simulated with same way. Also we made
to simulation model like uniform network group and
nonuniform network group. All of the communication
cost were assumed unit time. C,s, can be said 1 unit
time when it takes to send a unit message from one
node to the other node in sub switch. And a message
through main switch takes 1.4 unit time. We assumed
that a parallel application 1is partitioned into
independent tasks which don't have unlimited number.
This is a fundamental assumption in load balancing.
Even if tasks are distributed into each node with same
number, it is impossible to know the exact total
execution time of a node because each task is
characterized by unpredictable execution time.

Task model in each node use as follows{4]. In
our simulation model, each node have 100 tasks. But

each task execution time have random value.
Execution time of a task j of node i is 7 i(i). And
distribution of 7 (i) have a uniform random

distribution with the range, 0 < 7y (i) < 27 (). 7 (D)
is a average task execution time in node i. ¥y (i) is
distributed in the range, 0 < y (i) < 2E(r). E(r) is a
average task execution time in all node. We varied
Cmsg from 1% of E(r) to 5% of E(r). Cuu{one task
migration time) is set into 10 times of Cums. Cus 1S a
data segment movement time. So the overhead is large.
Fig. 3. is an example of network configuration in
nonuniform group.

o Mok Nods |

Group) Group?

Fig. 3. An example of network configuration.
(nonuniform group)

21633 ——me ——

3
Comemunic.ation costn)

Fig. 4. The comparison of each algorithm’s
execution time. (31 nodes, nonuniform group,
@ = 30% margin)

— 316 —

Speedup
o5 I3

> .
Communication crst)

Fig. 5. Speedup variation by communication

cost. (31 nodes, nonuniform group)

Speecup
seuy

The numbar of nade in astwork

Fig. 6. Execution time variation by the number
of node. (nonuniform group)

Fig. 4~6 show simulation results in network
consists of nonuniform group. Speedup is the ratio of
total execution time in no load balancing to total
execution time in load balancing. Fig. 6. shows that
speedup is getting worse in proportion to number of
nodes because complexity is increased.

TN oLB

Speedup = T
LB

Fig. 7. The comparison of each algorithm’s

execution time. (31 nodes, uniform group,

a = 30% margin)

Fig. 7~9 show simulation results in network
consists of uniform group. They have similar results as

nonuniform group except DLB algorithm.

6. Conclusions

We proposed marginal dynamic load balancing
algorithm which vary the number of node attending
load balancing dynamically according to communication
cost in cluster system. In MDLB(Marginal decentral
dynamic load balancing) algorithm, additional group
communication to determine overall margin range is
needed. But the advantage of MDLB is that cost of

2

s

Communication costr)

Fig. 8 Speedup variation by communication

cost. (31 nodes, uniform group)

Speetun

P
The number of nada in network

Fig. 9. Execution time variation by the number
of node. (uniform group)

collecting overall node information is low.

Blocking Phenomenons happen very frequently in
DLB because groups in DLB can't communicate each
other. MDLB showed always better performance than
DLB in nonuniform group network because MDLB
solved the load unbalancing in small group network.

Each groups consist of same node number in
uniform group network. In this case, the number of
node in a group is enough to solve load unbalancing
by itself, so DLB have better performance than MDLB.
MCLB(Marginal central dynamic load balancing) algori-
thm showed always better performance than CLB
because load balancing cost is reduced by marginal
migration scheme. But the speedup of MCLB algorithm
is getting worse than MDLB as node number increase.
Consequently, MCLB is suitable for small group
network and low communication network. MDLB is
suitable for nonuniform group network and high
communication network.

7. References

[1] Rajkumar Buyya, "High Performance Cluster Com-
puting Volume 1 - Architectures and Systems"

{21 M. Cermele, M. Colajanni, G. Necci, "Dynamic
Load Balancing of Distributed SPMD
Computations with Explicit Message-Passing",
IEEE97, ISSN:0-8186-7879-8/97

[3] Wentong Cai, Bu-Sung Lee, Alfred Heng, Li Zhu
"A Simulation Study of Dynamic Load Balancing
for Network-based Parallel Processing”, IEEE
1997, ISSN : 1087-4089/97

[4] Marc H. Willebeek-LeMair, Anthony P. Reeves,
"Starategies for Dynamic Load Balancing on
Highly Parallel Computers”, IEEE Transactions on
Parallel and Distibuted Systems, Vol 4, No. 9

— 317 —

