Proceedings of ITC-CSCC 2000, Pusan, Korea

Migration Strategies for Temporal Data based on
Time-Segmented Storage Structure

Yun, Hongwon

School of Computer Engineering, Silla University, Sasang-gu, Pusan, 617-736 Korea
Tel: +82-51-999-5065, Fax: +82-51-999-5652
Email: hwyun@silla.ac.kr

Abstract — Research interests on temporal data have been
almost focused on data models. There has been relatively
less research in the area of temporal data management. In
this paper, we propose two data migration strategies
based on time-segmented storage structure: the migration
strategy by Time Granularity, the migration strategy by
LST-GET. We describe the criterion for data migration
and moving process. We simulated the performance of
the migration strategy by Time Granularity in order to
compare it with non-segmentation method. We compared
and analyzed two data migration strategies for temporal
data.

1. INTRODUCTION

A great deal of work has been done in recent years in
the field of Temporal Databases [1, 2, 3, 4]. Due to this
effort, a large infrastructure, namely data model, query
languages, index structures, etc., has been developed for
the management of data evolving in time. However, there
has been relatively less research in the area of temporal
data management that is to say storage structure, data
migration. Several storage structures, such as reverse
chaining, accession lists, clustering, and cellular chaining
are proposed in [5]. In these storage structures open and
closed versions are maintained in two separate partitioned
storage areas: the current store and the history store.
Only the open version of an object is stored in the current
store, whereas closed (past) versions are stored in the
history store.

Sarda proposed that Historical DBMS divide a
historical relation into three segments: history, current,
and future. This segmentation is transparent to the user.
Some tuples may move from current to past at this time.
The concepts of a key for a historical relation can be
helpful for relating tuples across the segments [6].

Traditional relational database does not take into
account the special characteristic of temporal data, such

as past data, current data, and future data. This

conventional data management not required tuples
moving among the segments. In this paper we propose
two data migration strategies based on time-segmented
storage structure related to temporal database.
The rest of this paper is organized as follows. Section
2 presents related work on temporal storage structure.
In section 3 we describe two data migration strategies
based on time-segmented storage structure. Section 4
presents the simulation model and the experimental
results of our simulation. Finally, Section 5 will present

conclusion and direction for future research.
2. RREVIOUS WORK

Many storage structures have been proposed,
including reverse chaining, clustering, accession lists,
stacking, and cellular chaining. The temporally
partitioned storage structure has two storage areas, the
current store and history store. The current store contains
current versions which can satisfy all non-temporal
queries, and possibly some of frequently accessed history
versions. The history store holds the remaining history
versions. Separating current data from the bulk of history
data can minimize the overhead for conventional non-
temporal queries, and at the same time provide a fast
access path for temporal queries [5]. Ahn proposed
several storage structures, however not discussed future
segment in temporal data.

Sarda proposed HDBMS divide a historical relation
into three segments: HISTORY, CURRENT and
FUTURE, and DBMS that handle time must handle past,
present, future data [6]. Some values may move from
future segment to current segment when now reaches the
earliest from time in the future segment. In this scheme,
the concept of a key for a historical relation with real
world time can be helpful for relating tuples across the
segments. An advantage with this approach is simplicity.
A problem with this approach is when now reaches the
earliest from time in the future segment or the latest ro

-~ 329 —

time in the current segment, relating tuples may move
from future segment to current segment or from current
segment to past segment. Data moving among segments
occur at a granularity level (second, minute, and hour).
This work is mainly concerned with granularity level as
data is moved to other segment. Sarda introduced the
concept of the temporally-partitioned store and briefly
examined data moving.

Kouramajian proposed an archiving system that
maintains temporal data on magnetic/optical disks. In this
system, most of the historical data are maintained on
optical media, whereas some recent history data and
current data are maintained on magnetic media [7]. An
archiving system have been described, however not
discussed future segment in temporal data. In this paper
we propose two data migration strategies based on time-
segmented storage structure (past segment, current
segment, and future segment).

3. DATA MIGRATION
TEMPORAL DATA

STRATEGIES FOR

In this section we propose two data migration strategies
based on time-segmented storage structure. The symbols
used throughout the section are given below:
® PCB (Past Current Bound) : The time point on time

line divide a relation into two segments: past segment
and current segment.
® CFB (Current Future Bound) : The time point on
time line divide a relation into two segments: current
segment and future segment.
E;: j th version of entity version E,.
E;4: all attribute of entity version Ej;.
E;V,: valid start time of entity version Ej.
E;V,: valid end time of entity versionE;.

Fig. 1. shows a entity versions to be moving or copy

between the two segments.

Data moving and copy Entity version
Future — Current (E;Vi2PCBAE,V, <
(moving) CFR)
Current — Past (E;V,<PCB)
(maving)
Future -» Current (PCB<E;V,<CFB)n
(capy) (E.V.>CFB)
Current — Past (E;V,<PCB)YA(PCB<
(copy) E.V < CFR)

Fig. 1. Entity versions for moving or copy

Fig. 2. shows the dividing criterion based on now to
separate temporal data.

F;. V< E;. V=now | E. .V >now
E. V <now past data past data current data
E.V=now X X current data

E.V.>now X X future data
Fig. 2. Dividing criterion of migration strategy by time
granularity.
In the migration strategy by time granularity, entity
versions are stored as follows:
® Entity versions are stored in the past segment:
={E;|E;V,<now}
® Entity versions are stored in the current segment:
={E;|E;V,<now<E,V,}
® Entity versions are stored in the future segment:
={E;| E;V,>now}
In the migration strategy by LST-GET, time point LST is
selected based on the least valid start time of current

versions, to be the dividing criterion between past

segment and current segment. Time point GET is the

same as LST. The values of LST and GET are defined as:
LST=min { E.V |E,.V,<now< E_.V,}
GET=max { E;V,|E;. V,snow< E,V,}

Dividing criterion Segment
e < LST Pastsegment =~ |
(E;V, 2 LST) A (LST <
V. < GET) Current segment
V> GET Future segment
(E.V, < LST) A (LST <
.;jV, < GET\ Past, Current segment
(LST < E,.V, < GET) A
(E V> GET) Current, Future segment
Fig. 3. Storage segments of entity versions by LST and
GET

An entity version must be stored in a segment, given the
ividing criterions in Fig. 3.

Migration Entity versions
Future segment — (EjV, 2 LST) A (E;V, <
| Current segment GET)
Current segment — E;V,<LST
L Past segment
Fig. 4. Entity versions of moving object
Migration Entity versions
Future segment — (LST< E;.V, < GET) n (E;/V,
| Current segment > GET)
Current segment — (EjV, < LST) ~ (EV, <
L Past segment GET)

Fig. 5. Entity versions of copy object
Fig. 4. and Fig. 5 show the entity versions must be
moved and copied using the migration strategy by LST-
GET.

4. PERFORMANCE EVALUATION

In this section, we simulated the performance of the
time-segmented structure in order to compare it with non-
segmentation structure for temporal data. We present a
performance evaluation of the migration strategies
discussed in section 3. The parameters we used for all
experiments are shown in Fig. 6 and Fig. 7.

Parameter Value
Tuple lifespan 30, 31, ...,50
Tuple lifespan of LLT 300, 310, ..., 500
Relation lifespan 0~ 10,000
Rate of LLT 0,1,3,5,7,9%
Number of data 100,000 7

Fig. 6. Parameters and values for simulation

Parameter Value
Average Seek, Read/Write | 7.7 /8.7
| (msec)
Track-To-Track Seek, [0.98/1.24
i Read/Write (msec)
Average Latency (msec) 2.99
| Transfer Rate (Bytes/sec) | 16,777,216
Track Size (Bytes) 115,078

Fig. 7. Parameters and values of hard disk used in
simulation

The main queries put to study include temporal point
query, temporal range query. A temporal point query was
assumed to read only one segment in three segments. A
temporal range query was assumed to read one, or two, or
three segments. A temporal database was assumed to be
implemented with a record-based storage system which
supports tuple versioning.

Fig. 8. Shows the average response time of two data
migration strategies at second granularity level with
different data moving rate: 10, 20, 30, 40, and 50%.
The main observation from the graph is that non-
segmentation has the best average response time. This is
because in data moving to other segments impose very
large overhead, whereas non-segmentation not requires
data moving. Fig. 9. Shows the average response time of
two data migration strategies at minute granularity level
with different data moving rate.

Fig. 10. shows the average response time of two data
migration strategies without long lived tuples. Fig. 11.
shows the average response time of two migration
strategies for temporal queries with different query rate
and case in exist long lived tuples.

average response time (ms)

l average interarrival time (ms)

Fig. 8. Average response time at second granularity level
for temporal queries.

—1]

! 800 -
! ! Non-scg

700 =B e 10

P E o600 [T Tsep20 —— 1
' E 500 _-f+5°5'3° e —— ,,,}_X\
g | T* T seg40 | - I G |
-] 400 [~®—Scg-50 | ‘
I g 300 SR
g ——]
| Eé" 200 !
i & 100 1
i 0 ; - . ,
250 300 350 400 450 500

average interamrival time (ms)

Fig. 9. Average response time at minute granularity level
for temporal queries.

Temporal)
7000 granularity / ;
6000 [~ LST-MET

average response time(ms)
&
]
(=]

temporal query rate(%)

Fig. 10. Average response time for two migration
strategies case in not exist LLT

8000 [T—o~_
| | Temporal e R
i 7000 granularity | i /
£ oo “+LSTMET'
[£ 5000 [I
) 4000 T
e — —
| & | /S
H 'é’ 2000 I /
| & |
D g8
i 0
! 10 20 30 40 50
i temporal query rate(%)
Fig. 11. Average response time for two migration

strategies case in exist LLT

— 331 —

— b
800 _!f ¢— Temporal I
. R - granularity-0
7 —®—[ST-GET-0
€ - » |
£ 500 - - b - |7t Temporal ! |
3 granularity-1!
g 40 - -~ A - ®=IST.GET1
2.
g 300 I
& 200 [o
2 100 [. R
0 : .
30 40 50 60 70

average interarrival time(ms) ‘

Fig. 12. Average response time for changing average
interarrival time

Fig. 12. shows the response time of two migration
strategies for temporal queries with different average
interarrival times. Notice that the performance as
interarrival time of temporal queries decrease, the
performance gap between time granularity in case not
exist LLT and LST-GET in case exist LLT increase.

5. SUMMARY

Numerous proposals for extending the relational data
model as well as conceptual and object-oriented data
models have been suggested. However, there has been
relatively less research in the area of time-segmented
storage structure and data migration strategies for
temporal data. This paper presents the segmented
storage structure in order to increment search
performance and the two data migration strategies for
segmented storage structure.

This paper presents the two data migration strategies:
the migration strategy by Time Granularity, the migration
strategy by LST-GET. In the migration strategy by
Time Granularity, the dividing time point to assign the
entity versions to the past segment, the current segment,
and future segment is described. In the migration strategy
by LST-GET, we describe the process how to get the
value of dividing criterion. Searching and moving
processes are described for migration on the future
segment and the current segment and entity versions to
assign on each segment are presented. We simulate the
search performance of the segmented storage structure in
order to compare it with conventional storage structure in
relational database system. And extensive simulation
studies are performed in order to compare the search
performance of the migration strategies with the
segmented storage structure.

REFERENCES

[11] M.D. Soo, “Bibliography on Temporal Databases,”
ACM SIGMOD Record, Vol. 20, N. I, 1991.

[2] N. Kline, “An Update of the Temporal Database
Bibliograhpy,” ACM SIGMOD Record, Vol. 22, N.
4,1993,

{31 V.J. Tsostras, A. Kumar, “Temporal Database
Bibliograhpy,” ACM SIGMOD Record, Vol. 25, N.
1, 1996.

[4] C.S. Jensen, et al, “A Consensus Glossary of
Temporal Database Concepts-February 1998
Version,” in Q. Etzion, et al.,, Temporal Databases-
Research and Practice, LNCS N. 1399, Springer-
Verlag, 1998.

[5] 1. Ahn, R. Snodgrass, *“ Partitioned storage for
temporal databases, In Information Systems,” Vol.
13, No. 4, 1988.

[6] N.L. Sarda., “Time-Grid: A file structure for historical
databases,” Technical report, Indian Institute of
Technology, April 1992.

[7] V. Kouramajian, “Temporal Databases: Access
Structures, Search Methods, Migration Strategies,
and Declustering Techniques,” Ph. D. Dissertation,
The University of Texas at Arlington, 1994.

[8] Ahn, I. “Towards an implementation of database
management systems with temporal support,” In
IEEE International Conference on Data Engineering,
Feb., 1986.

[9] Elmasri, R., Jaseemuddin, M., and Kouramajian, V.
"Partinioning of time index for optical disks", In
IEEE International Conference on Data Engineering,
Feb. 1992,

[10] Jensen, C. et al.,, "A consensus glossary of temporal
database concepts", In ACM SIGMOD Record,
23(1), Mar. 1994

[11] A Tensel et al., Temporal Databases: Theory, Design,
Implementation, Benjamin/Cummings, 1993.

— 332 —~

