Proceedings of ITC-CSCC 2000, Pusan, Korea

Design and Implementation of the Tree-like Multiplier

Gi-Yong Song, Jae-Jin Lee, Ho-Jun Lee, and Ho-Jeong Song

Dept. of Computer Engineering, Chungbuk National University
Cheongju, Chungbuk 361-763 Korea.

Tel: +82-43-261-2452, Fax: +82-43-262-2449

E-mail: gysong@cbucc.chungbuk.ac.kr

Abstract This paper proposes a 16-bit X 16-bit
multiplier for 2 twos-complement binary numbers
with tree-like structure and implements it on a
FPGA. The space and time complexity analysis shows
that the 16-bit Tree-like multiplier represents lower
circuit complexity and computes more quickly than
both Booth array multiplier and Modified array

multiplier.

1. Introduction

Multiplication is one of the basic operations in various
digital systems. An array multiplier[1], one of the
has a good
is favorable for VLSI
implementation. In a multiplier based on redundant

well-known combinational multipliers,

repeatability of cells and

binary arithmetic [2-4], additions are performed in a
constant time but excessive gates are required to
process the redundant binary representation. In this
work we propose a 16-bit multiplier with tree-like
structure, implement it on a FPGA, and then analyze
it in terms of circuit complexity and computation

time.

2. Array Multipliers

Booth array multiplier is a typical combinational multiplier
performing multiplication on twos-complement binary
numbers.

The Booth multiplier shows high degree of
repeatability of «cell and carries out operations
concurrently to reduce the total computation time. The
of 4-bit Booth multiplier with

simplified data flow is shown in Fig.l.

cell arrangement

multiplicand bits

@w~—0 ~®0——D-~-—c3

Fig. 1. A 4-bit Booth array multiplier

The cell C is for Booth recoding and cell A is
for addition and The cells

enclosed by dotted line are introduced to cover for

subtraction. in area
sign-extension required by computation on negative
operand, and the number of rows for n-bit multiplier
is n.

The reduction in the number of additions and
subtractions from Booth recoding does not contribute
to this array because there should be a row of cells
for each bit of Booth-recoded multiplier representing
potential addition or subtraction. To reduce the height
of array, n, the canonical signed digit recoding or
should be

examine the canonical

radix-4 recoding considered. Let us
signed digit representation
which is obtained from identifying isolated ls and Os
in the multiplier first. Only a single addition or
subtraction needs to be performed at an isolated 1s or
0s. The rule for forming canonical signed digit is

shown in Table 1.

—371—

multiplier | mode | Booth mode
bit-pair | -in | bit [-out
0 0 0 0 0
0 1 0 1 0
1 0 0 0 0
1 1 0 il 1
0 0 1 1 0
0 1 1 0 1
1 0 i 1
1 1 1 0 1

Table 1. The rule for forming canonical
signed digit

The mode introduced to identify the isolated 1s
and Os in multiplier by detecting run of 1s and Os is
exactly the same as the carry-out of the full adder
when the adjacent bit pair of multiplier and mode-in
are viewed as inputs to full adder, so we can recode
the multiplier into canonical signed digit representation
parallelly in one step instead of going through the
multiplier one bit at a time using carry-lookahead
circuit.

Although the canonical signed digit representaion
contains an average of 2n/3 0s, each bit pair in the
signed digit
addition or subtraction and this results in the n/2

canonical form represents potential
rows of cells in the modified array. On the other
hand, the radix-4 recoding examines three adjacent
bits of multiplier and then generate a single recoded
value located at corresponding position according to

the Table 2 shown below.

L. bit-recoding at
multiplier i
. . corresponding
adjacent bits - .
position
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Table 2. The rule for radix-4 recoding
The radix-4 recoding contains an average
of 5n/8 0s, but the number of potential addition

or subtraction is n/2, one operation for each bit pair
of multiplier, so the situation in the radix-4 recoding
is the same as in the canonical signed digit recoding
except for the difference due to the recoder circuit.
The recoder for canonical signed digit representation,
Fig.2a
carry-lookahead circuit and then generate the code

shown in determines mode-out using

from the converter which takes inputs from the
multiplier bits and carry look-ahead circuit.

The recoder for radix-4 representation shown in
Fig.2b generate the code from the three adjacent bits of
multiplier. The Ci, Cz in Fig. 2 are converter cells for
the recoder for

each case. For n-bit multiplier,

canonical signed digit form in Fig.2a requires n
converter cells in contrast to the recoder for radix-4

code requiring n/2 converter cells.

. signed digit
code

Q| =

— Ci p—¢
- .) ‘__‘

Carry— >

* | Lookahead 1 b
L) o circuit - |

— C p—¢

------------------------- multiplier bits

Fig. 2a. The recoder for canonical signed digit form

Cz

radix—4 code

C2 :<;|

[o:3

et] 6

Fig. 2b. The recoder for radix-4 recoding
The complexity of the radix-4 recoder is lower

than that of the canonical signed digit recoder, so the
reasonable recoding selection for an multiplier will be

the radix-4 recoding.

—372—

The cell arrangement of 8-bit modified array
multiplier based on radix-4 recoding with simplified data

flow is shown in Fig.3.

multiplicand bits

-0 —-——D —~—c3

Fig. 3. Modified array multiplier

The number of rows of the array is reduced to
n/2, but the cells for sign-extension are still required
to accommodate the computations on the negative

operands.

3. Design and Analysis of the Tree-like Multiplier

The cells for sign-extension will be eliminated and
the height, the number of rows, will be reduced again
by separating each pair of rows, and distributing each
pair along the tree-like structure. The layout of 16-bit
multiplier for 2 twos-complement binary number with
tree-like structure is shown in Fig.4.

Fig. 4. A 16-bit Tree-like

multiplie
TR
k]
I

| Parallel Adder

|
¥
YI5/15y15y15 vy

il aad
r
Two top rows produce partial products for each
pair of recorded muiltiplier bits and add them

concurrently, then the sum of partial products feeds

into the parallel adder below.

v~ —o

The accumulated sum of partial products is generated
from each of parallel adder in the middle and then are
added again by entering the lower parallel adder.
The dashed
determines the multiplication time.

Fig5 shows the implementation of 16-bit X 16-bit
tree-like multiplier synthesized on a FPGA, Spartan
xcsd40-pq240 [5].

line shows propagation path which

i ol s

Sl fﬁ’ﬁgﬂ mjminizz|

ool

b

L
ol s, ek L

s O O 5 O R k] e b (A QR PRGA et

e S
FHOAD 2rsn

Fig. 5. Implementation of the Tree-like multiplier

We

multiplier,

the
propagation delay which

will analyze complexity of each
and find out
becomes computation time. The size of operand, n, is
assumed to be a power of 2. Each combinational
multiplier consists of two or three kinds of cells.
These include cell capable of adding and subtracting,
one-bit full adder cell,
addition that the -

combinational logic, the number of cells used for

and cell for recoding. In

recoder cells are simple

recoding in each multiplier is relatively small
compared to the number of arithmetic cells and the
effect of those cells on the circuit complexity and
propagation delay is not significant, so we will regard
the recoder cell as sharing the same complexity with
full-adder cell and only count the number of cells
without classifying them according to the logic
function they implement. Most of the cells comprising
each combinational multiplier are one of the two types
of arithmetic cells; cells for addition and subtraction,
or cells for addition only.

Let the cell for addition and subtraction have

unit circuit complexity and assume the same unit

~373 -

propagation delay for all cells.

Let k be the ratio of the complexity of adder
cell to complexity of adder /subtractor cell. Then k
becomes a constant between 0 and 1.

The complexity of each n-bit multiplier is shown in

Redundant
Solid-State
Feb.1987.

Binary Adder

cireuits,

Tree.”
vol.SC-22,

[5]1 Xilinx, 1999 Xilinx Data Book.

Table 3.

Number of cells Propagation
" Booth arra ’
o y % n® — ~£‘ + kn 3n—1
multiplier
Modified arra
. .a v % n + 4 kn 2 n—1
multiplier 2 2
1.2
- Tree-like 2" trt)
. ”n
multiplier k[ji n2+-%nlogn—%n +1]

Table 3. The complexity of each multiplier

4. Conclusions

In this paper the 16-bit X 16-bit twos-complement

binary number multiplier with tree-like structure
based on

implemented on a FPGA. The original Booth array

radix-4 recoding was proposed and
multiplier, _Modified array multiplier and Tree-like
multiplier were analyzed from a standpoint of circuit
complexity and computation time. In comparison with
the original and modified multiplier, the Tree-like
multiplier represents lower circuit complexity, although
the exact complexity depends on the specific value of
k, and computes more quickly.

References

{11 Hayes, JP., Computer Architecture and
Organization, 3rd Ed. McGraw Hill.

[21 K.W.Shin, B.S.Song and K.Bacrania, "A 200-MHz
Complex Number Multiplier Using Redundant
Binary Arithmetic.” IEEE J. Solid-State Circuits,
vol.33, pp.904-909, June 1998.

[3] S.M.Yen, CS.Laih, CH.Chen and JjY.Lee, "An
Effident Redundant-Binary Number to Binary

- Number IEEE J. Solid-State
Circuits, vol.27, pp 109-112, Jan.1992.

[4] Y Harata, Y.Nakamura, H.Nagase, M.Takiga- wa

and N.Takagi, "A High~-Speed Multiplier Using a

Converter.”

— 374~

IEEE]
pp28-33,

