Proceedings of ITC-CSCC 2000, Pusan, Korea

A Scheduling Approach with Component Selection

Katsumi HARASHIMA Hisashi SATOH Daisuke HIRO Toshiro KUTSUWA
Faculty of Engineering, Osaka Institute of Technology
5-16-1, Ohmiya, Ashahi-ku, Osaka, 535-8585 Japan
Phone: +81-6-6954-4305, Fax: +81-6-6957-2136
E-mail: harasima@elc.oit.ac.jp

Abstract: The reduction of chip area and delay
is important purpose of Scheduling in High-Level
Synthesis. This paper presents a scheduling ap-
proach with component selection. After obtaining
a initial schedule taking only single-functional u-
nits, the component selection of our approach at-
tempts the reduction of chip area and/or delay by
the selection more suitable components in a com-
ponent library using Simulated Annealing.

1 Introduction

High-Level Synthesis(HLS) is a technology that
generates a register transfer description automat-
ically from a behavioral description. Scheduling
in HLS is a important phase because it influences
chip delay and areaf[l]. Scheduling assigns each
operation to a particular control step in order to
minimize chip area and delay exploiting parallelis-
m between operations. Because of these contrary
purposes, it generally considers one as restriction-
s and minimizes the other. In order to simplify
the scheduling problem, most of conventional ap-
proaches take the component restriction that each
type of operation can be performed by one and
only one type of functional units[2]-[5]. Howev-
er this component restriction is not realistic. In
practice, designers select suitable components in
the circuit component library to design LSIs hav-
ing a different characteristic.

In this paper, we propose a scheduling ap-
proach with component selection in order to mini-
mize chip area and delay. The proposed approach

X={@a+t)+0®x}—{lc+d X e}

Fig. 1: Scheduling.

obtains a initial schedule by the ASAP scheduling
with the conventional component restriction, and
then replaces current components by more suit-
able ones in order to reduce chip area and/or de-
lay using Simulated Annealing (SA). SA is a con-
trol strategy that applies the annealing process in
physics to combinational optimization to move out
a locally optimal solution and on toward a globally
optimal solution. QOur approach can reduce chip
area and delay simultaneously by using SA for the
replacement of components, called the component
selection.

2 Scheduling

The scheduling problem requires a data flow graph
(DFG) corresponding to the behavioral descrip-
tion. A DFG is a directed acyclic graph, where
each node represents an operation in the behav-
ioral description. The edge from node O; to node
O, exists if operation Oy consumes the result pro-
duced by operation O;.

The task of scheduling decides the compu-
tation order of all operations under the condition
that it dose not break the data dependencies. Fig-
ure 1 shows an optimal scheduling without the
constraint of the number of available functional u-
nits. But the fact that a multiplier is slower than
an adder equalizes the scheduling result in Fig.1 to
the result in Fig.2. As a result, adders idle during
part of the clock cycle and so are underutilized.

Fig. 2: Consideration of delay.



adder subtracter adder-subtracter
Delay = 1 Delay = 1 Delay = 1
Area = 10 Area = 10 Area = 12
multiplier 2cycle- piplined-
multiplier mutiplier
Delay = 2 Delay = 2 Delay c 34
Area = 20 Area = 22 Area =

Fig. 3: Component library.

Delay = 5

Delay
Area

nou
=)

50 Area = 42

Fig. 4: Replacement 1.

3 Scheduling Algorithm

The proposed approach obtains a initial schedul-
ing by using the ASAP scheduling, which assign-
s operations into the earliest control steps within
which the operations are to be scheduled, and then
replaces current functional units by more suitable
ones in order to reduce chip area and delay with
SA.

3.1 Component Selection

In the component selection, our approach replaces
current functional units by units having the effect
of the reduction of chip area and/or delay in com-
ponent libraries. A component library contains
multiple types of functional units, with different
characteristics. In our approach, available func-
tional units are single-functional (e.g., adder, sub-
tracter, multiplier), multi-functional (e.g., adder-
subtracter, ALU), multi-cycle, and pipelined units
as shown in Fig.3. Since the ASAP scheduling in
our approach uses only single-functional units, our
replacement takes three techniques.

1. Replace with multi-cycle units
This replacement changes a single-cycle unit
to a multi-cycle unit to reduce chip delay.
For example, two adders can execute dur-

non
gl
18}
L)
N W
Su
1
L<
nou
[~y

Fig. 6: Replacement 3.

ing a 2-cycle multiplier and so take little idle
time(Fig. 4).

2. Replace with pipelined units
This replacement changes a multi-cycle unit
to a pipelined one to reduce chip area and
delay. For example, two multiplication can
share the same 2-stage pipelined multiplier,
which the two multiplication execute at two
successive control steps(Fig. 5).

3. Replace with multi-functional units
This replacement changes single-functional u-
nits to a multi-functional unit to reduce chip
area. For example, an adder and a subtracter,
execute at different control steps, are changed
to an adder-subtracter(Fig. 6).

Since the number of combinations of opera-
tions and functional units grows rapidly with the
number of nodes in a given DFG, heuristic ap-
proaches have difficulty in finding the optimal so-
lution. Therefore, our approach replaces function-
al units using SA.

3.2 Introduction of Simulated Annealing

Table 1 shows the correspondence between SA and
the component selection.



Table 1: Correspondence between SA and the
component selection.

[ SA l component selection J
system state circuit state
energy hardware cost
change of state replacement of components
temperature control parameters
equilibrium state | solution

In the proposed approach, the gain G(X) of
the hardware cost in the circuit state X represents
the reduction rate of hardware cost compared with
the hardware cost of the initial scheduling, and is
formulated as follows:

G(X) = P, (A(X) [ Ainit )

+ P {1 - (UX)/ Uinit ) }

+ Ps ( S(X) / Sinit )

+ Py (D(X) / Dinit ) 1)

where A(X) is the sum of area of functional

units, U(X) is the average operating ratio of al-
1 functional units, S(X) is the number of control
steps, D(X) is the execution delay, A;nit, Usinit,
Sinit, and D;p;; are the initial values of A(X),
U(X), S(X), and D(X) respectively, and P,, P,,
P, and P, are alternative parameters.

If the new state is worst than the old state,
SA avoids locally minimal solutions by accepting
the new state with a probability determined by
control parameters and a random number. But
SA can not avoid locally minimal solutions per-
fectly because it generates the new state by re-
placing functional unit randomly. Qur approach
improve the capacity to find the optimal solution
by taking a look-ahead scheme. The a look-ahead
scheme selects the replacement with the best gain
among m next state candidates. Each candidate is
obtained by repeating our functional unit replace-
ment by SA n times.

Figure 7 shows the result of the application
of our component selection to the schedule in Fig.
2. Our component selection has been able to op-
timize both of chip delay and area.

4 Experiments

Our approach was tested on five DFGs generated
randomly. Tables 2 — 6 show the experimental re-
sults. In each table, Init is the initial scheduling

Fig. 7: Result of the component selection.

Table 2: Result for a DFG with 20 operations.

A | #U U S| D |CPU

[s]
Init | 3100 811708 | 9|90 —
Iter | 2920 612620 990 0.35
Ours | 2740 219643 |14 | 77| 0.81

by using the ASAP scheduling, Iter is a conven-
tional iterative refinement method and Ours is the
proposed approach. A, U, S and D are the final
value of A(X), U(X), S(X) and D(X) respective-
ly, #U is the number of functional units, and CPU
is the computational time.

In experiments, we took following alterna-
tive parameters.

P, = (Node_Num/100)%7 (2)
Py 1/P, (3)
if P4 > Py
Ps = Pd/4 (4)
P, = de/2 (5)
P P,/4 (6)
P, = P2 (7)

where Node_Num is the number of operations in
each DFG.

We confirmed that the solution in Fig. 2 was
optimal by searching all replacements. Solutions
for other four DFGs improved the operating ra-
tio, area, delay and the number of functional units
compared with the iterative method. Especially,
the operation ratio was improved about double.
This result is effective to reduce chip area because
few functioan units and signal lines idle.



Table 3: Result for a DFG with 50 operations. = Table 5: Resultl for a DFG with 500 operations.

( A |[#U| U S| D |CPU A #U | U S| D | CPU
[s] [s]

Init | 6650 | 16 | 13.84 | 14 | 140 — Init | 28270 | 42 | 14.38 | 48 | 480 —

Iter | 3280 713612 |14 | 140 | 1.97 Iter 4090 | 10 | 42.02 | 68 | 748 | 273.30

Ours | 2130 318047 |20 | 120 | 7.36 Ours | 4020 8 | 85.03 | 72| 396 | 338.51

Table 4: Result for a DFG with 100 operations.

Table 6: Results2 for a DFG with 500 operations.

A #U U S| D | CPU A #U U S D | CPU
[s] [s]
Init | 14440 ( 22 | 14.57 | 18 | 180 — Init | 35210 { 49 | 12.25 | 49 | 490 —
Iter 4300 | 11| 29.14 | 18 | 180 | 8.70 Iter 4870 717678 88528 | 187.76
Ours | 4050 5| 71.26 | 27 | 162 | 11.44 Ours | 3330 5 | 88.69 | 107 | 642 | 389.71

In all results, our approach required the
larger number of control steps than the iterative
method. However execution delays in proposed
approach were shorter than Iter because the clock
cycle became shorter by using pipelined and multi-
cycle units effectively in our component selection.

Although the computational times became
longer than the iterative method, they are reason-
able.

5 Conclusion

This paper has proposed a scheduling approach
with component selection. After obtaining a ini-
tial scheduling by the ASAP scheduling, the com-
ponent selection minimizes chip area and delay by
using SA in the component selection because SA
can avoid falling down locally optimal solutions.
As experimental results, we have confirmed that
our approach can obtain near-optimal solutions.

Our future work will include applying the
proposed approach to practical data and then con-
firm the availability of it.

References

[1] Daniel Gajski, Nikil Dutt, Allen Wu and
Steve Lin, “HIGH-LEVEL SYNTHESIS In-
troduction to Chip and System Design,” K-
luwer Academic publishers, 1992.

[2] M.K.Dhodhi, F.H.Hielscher, R.H.Storer and
J. Bhasker, “Datapath Synthesis Using a
Problem Space Genatic Algorithm,” IEEE
Trans. Comput.-Aided Design of Integrated
Circuits ans System, Vol.14, No.8, pp.934-
944, 1995.

[3] W.F.J.Verhaegh, P.E.R.Lippens, E.H.L.Arts,
J.H.M.Korst, J.L.van Meerbergen and A.van
der Werf, “Improved Force-Directed Schedul-
ing in High-Troughput Digital Signal Process-
ing,” IEEE Trans. Comput.-Aided Design of
Integrated Circuits ans System, Vol.14, No.8,
pp.-945-960, 1995.

[4] Kenji Ohmori, “High-level Synthesis Using
A Genetic Algorithm,” Trans. of IEICE,
Vol.J81-A No.5 pp.854-862, 1998.

[5] Sanghum Park and Kiyoung Choi,
“Performance-Driven Scheduling with Bit-
Level Chaining,” Proc 36th Design Automa-
tion Conf., pp.286-291, 1999.

— 402 —




