Proceedings of ITC-CSCC 2000, Pusan, Korea

Generation of Control Signals in High-Level Synthesis from SDL Specification

Sang-Hoon Kwak ", EuiSeok Kim*, Dong-Ik Lee”, Young-Seok Baek ™ and In-hak Park "™

* Department of Information and Communications, Kwang-Ju Institute of Science and Technology

1 Oryong-Dong Puk-ku Kwang-Ju, South Korea
Phone: +82-62-970-2267, Fax: +82-62-970-2204

E-MAIL : shkwak@geguri.kjist.ac.kr, uskim@geguri kjist.ac kr, dilee@kjist.ac.kr

** IC Design Department, Electronics and Telecommunications Research Institute

161 Kajong-dong, Yusong-Gu, TAEJON, 305-350, KOREA

Abstract —This paper suggests a methodology in which
control signals for high-level synthesis are generated from
SDL specification. SDL is based on EFSM(Extended Finite
State Machine) model. Data path and control part are
partitioned into representing data operations in the form of
scheduled data flow graph and process behavior of an SDL
code in forms of an abstract FSM. Resource allocation is
performed based on the suggested architecture model and
local control signals to drive allocated functional blocks
are incorporated into an abstract FSM extracted from an
SDL process specification. Data path and global controller
acquired through suggested methodology are combined
into structural VHDL representation and correctness of
behavior for final circuit is verified through waveform
simulation.

I. INTRODUCTION

The number of transistors in a modern VLSI chip
amounts to several millions and the system-on-a-chip trend
has become more remarkable. The trends require higher-
level specification and modeling scheme.

SDL is an international standard for a specification of
communication systems, ie. ITU-T Recommendation,
Z.100. Due to the implementation independence properties,
available tools for simulation and code generation, and
wide prevalence as a system specification[1], SDL has
been recently considered as an initial specification
language for hardware/software co-design. Powerful tools
and methodologies based on SDL have been developed
for software part. However its hardware application is not
the case.)

On the other hand, HDLs such as VHDL and Verilog
have become very popular and helpful for VLSI designers,
especially in ASIC design, but its hardware oriented
property and lack of abstraction capability make their use
of system-level design difficult[2]. Use of SDL in hardware
design makes it possible for hardware designers to give a
system-level specification and verify the behavior of
system at top level easily.

The objective of this work is to suggest a hardware

SDL
specification

A

Partitioning

e T,

Abstract FSM Scheduled DFG
Generation generation

A

Control Datapath
Generation for Generation
Generation Transitions

\/

Unifyi;g
Datapath and
Control

Local
Controller

Y

) 4

(Gate and
Functional Block
Representation

Fig.1 Overall Flow of the Methodology

synthesis framework in which an SDL specification of a
VLSI system is automatically converted into gates and
functional blocks. Previous work to use SDL specification
in hardware design focuses on translating SDL code to
equivalent VHDL code[3, 4]. Howerver in this paper an
SDL specification is synthesized into gates and functional
block-level circuit directly. Required functional blocks
during synthesis are assumed to be pre-designed. Overview
of the suggested methodology is depicted in Fig.1

This paper is organized as follows. Section II presents
architecture model that the suggested methodology uses,
and Section III explains how control signals form SDL
process behavior are generated and they are combined with
datapath control signals. In section IV, an example using
suggested methodology is given, and conclusion is
presented in section V.

— 410 —

Global
Cotroller

I

Fig.2 Architecture Model Used in the Suggested
Methodology

II. ARCHITECTURE MODEL

SDL provides three reserved words, system, block, and
process for a system and substructure of a system. System
means a complete object that a designer tries to specify in
real application, block and process are used to describe
behavior of parts of a system. Communications between
processes and blocks are performed by exchanging signals
that can carry data variables conceptually. So we present an
architecture model to cover behavior of terminal process
and communication of SDL objects (processes, blocks).

A process that corresponds to a terminal component in a
hierarchical SDL structure is implemented based on the
following architecture. Functional blocks and registers
required in a process are allocated. A multiplexer is
connected to each input/output port of functional blocks or
registers. In the case of using some resources with different
input sources, multiplexers permit to select one input
according to control signals {5, 6]. Architecture model used
in this methodology is presented in Fig.2.

Resource allocation procedure is performed over the
suggested architecture model, and resource sharing is
accomplished by the multiplexers. Control signals that
drive functional blocks and multiplexers are generated by
local controllers for a process, and all the control signals
are sampled at the rising edge of clock. Global structure of
an SDL system, where SDL system implies a system
specified by SDL, including multiple processes directly
corresponds to hierarchical structure of implemented
hardware. All the SDL objects like processes and blocks
are mapped to corresponding hardware modules, and all
communication paths like signal routes and channels are
mapped to data buses and control wires.

A signal object of SDL which is an event to system
affects the system behavior as an input or an output. This
event is discrete object conceptually, but hardware signal
has 1, 0 value physically. Therefore we need to interpret
signal object in implementation of hardware from another

signal s1{integer}, s2:

process
MOMON kivud BN

J L port s1 I
port s2 : l :

—— port s2 data_s1

——— port st

m——t data_sti

process A

Fig.3 Port Organization for Input Signals and
Corresponding Waveforms

point of view.

Since the methodology suggested in this paper assumes
that the specification is implemented in a clock driven
synchronous circuit, a state transition of a process and data
transfer to a register are performed at the rising edge of
global clock. Arrival of a signal object to a process are
modeled in such a way that for, an incoming SDL signal,
hardware signal has 1 value at the designated port. Input
and output ports are assigned for distinct SDL input and
output signals. Output signal transmitted from one SDL
process to another one should be stable at least for a rising
edge of the clock so that later one can accept the signal.
For data values carried with a signal, extra ports are to be
assigned, and the data values are assumed to be stable
before the signal input comes into a process. Fig.3
represents the organization of hardware block
corresponding to the situation that signals s1 and s2 enter
into a process named process A. The signal S1 carries an
integer type of data variable.

III. SYNTHESIS FROM SDL
SPECIFICATION

SDL specification is partitioned into data operation part
and control part and each part is represented by a scheduled
data flow graph, in short an SDFG and an abstract FSM,
respectively. Abstract FSM is defined to describe only the
behavior of FSM of an SDL process. An SDFG is
constructed for one transition of original SDL process and
is assumed to be already available for the synthesis
procedure in this paper.

A local controller for a process is made by incorporating
control signals into an abstract FSM. New states are
assigned between two states of an abstract FSM according
to the number of time steps of an SDFG The control
signals appear as outputs of an abstract FSM, and include
selection signals for multiplexers, and enabling signals for
registers. Resource allocation procedure generates datapath
from an SDFG based on the suggested architecture model ,
and local control signals to control functional blocks in

— 411 —

Muitiplier ALY

c_m3<-
c_alu<-01 (addition}

Fig.4 Control Signal Generation from Scheduled DFG

datapath are implicitly decided according to the allocated
datapath.

Algorithm 1 describes how control signals for functional
blocks and MUXs are generated. In the algorithm, TR is a
set of transitions to be able to occur in an SDL process,
SDFG, is a scheduled data flow graph for data operations
to occur during a state transition, and op, is a node in an
SDFG which means an operation to be performed, and
OP(j) is the set of all nodes at time step j of an SDFG.
7€ g 15 @ register to store result of operation
performed by a functional block in a clock cycle, which
allows resource sharing. Operation code means the control
code required when a functional block can perform
multiple operations according to control code as most ALU
do or when extra control code is required. Fig.4 depicts an
example which shows how control signals to functional
blocks, multiplexers, and registers are generated.

Algorithm 1 - Control Signal Generation for Data-Path
Sforalltr € TR
if (SDFG,) # & then
Jorj := I to the number of last step in SDFG,
Sforall op; € OP()
Find functional block FB, allocated for op,
Specify operation code of FB, for op,
Find input source of FB, for op; and
Specify correct MUX control code
Find reg, ager ANd specify enable signals
for reg, ou
Specify MUX control code for 7€ ager SO
that FB, s output is selected
end for
end for

end if
end for

After resource allocation procedure, control and an
abstract FSM acquired from control part are combined to
generate local control signals. Fig.5 shows how the
composition is performed. Fig.5 (a) depicts a graphical

(stt

@ sf

mlSa

sx,y)

ri=(x*y)+z */c_m1-,c_m2+,ld_tmp1+

@ */e_m1-,c_m3+, c_alud~,

c_alut+, {d_z+

ri=(xry)+z

(a) (b (c)

Fig.5 Composition of Abstract FSM and
Control Signals

SDL representation of a transition of a process, ¢ ml,
¢_m?2 and c_m3 represent control signals for multiplexers,
c¢_alu0 and c_alul are control signals for ALU, and 1d z,
Id_tmp are enabling signals for registers.

Final circuits are obtained by port mapping local
controller's output to each functional block’s control input
and are simulated by a VHDL simulator. The following
algorithm describes a composition algorithm in which
control signals are incorporated into an abstract FSM. A
local FSM which is generated by inserting control signals
into an abstract FSM implements a local controller for a
process.

Algorithm 2 - Composition of Control Signals and
Abstract FSM
while (non-terminal state in an SDL process) do
when meet a state in abstract FSM, assign a new state in
the local FSM
Give an input signal in an abstract FSM as local FSM's
input
if SDFG for a current state transition exists then
while (time step remains in an SDFG) do
For a time step in an SDFG assign a new state in a
local FSM
Specify control signals for data modules driven in
current step as local FSM's output signal
Specify input signal as don't care input
end while
end if
Specify abstract FSM's outputs as local FSM's outputs
end while

IV. BARCODE READER EXAMPLE

A controller for a barcode reader is synthesized by the
proposed methodology. This example is taken from 1995
High-Level Design Repository[8]. The algorithm used by
the reader is composed of reading in bits from the optical
scanner and recording the width of black and white striptes.
The VHDL model of the reader is also available in the
repository.

— 412 —

Fig.6 Block Diagram of Barcode Reader

Initial specification for the controller is given in SDL
source code. Its behavior is verified at system-level using
an SDL simulator. Fig.6 and Fig7 represent block diagram
synthesized by the suggested methodology and waveform
that shows the behavior of the barcode reader, respectively.

V. CONCLUSION

We suggest a hardware synthesis framework by which
an SDL specification is synthesized into hardware without
being converted into HDL. Further in the course of
synthesis, system level specification is checked using a
SDL simulator. Thus the advantages of early prototyping
and the implementation independent property of the
languages are certified. It is shown by experimental results
that the proposed methodology is comparable to
conventional VHDL based design in terms of size of circuit.

With the proposed methodology we reduce the gap
between specification and hardware implementation. This
work presents the methodology using system level
specification with regard to high-level synthesis. However
there is much room for further study such as optimization
of synthesized circuits in terms of area and/or performance
and architecture. And the applicability to
hardware/software co-design remains for further research.

Acknowledgement
This work is supported in part by Ministry of Education
through the BK 21 Information Technology program.

REFERENCES

(1] J. Elisberger, D. Hogrefe, and A. Sarma, “SDL : Formal
Object-oriented Language for Communicating
Systems”, Prentice-Hall, 1997

[2] S. Narayan, and D. Gajski, Features Supporting
System-Level Specification in HDLs, In Proceedings
of EURO-DAC, pages 540-545, 1993

[3] O. Pulikkinen, and K. Kronldf, “Integration of SDL and
VHDL for High-Level Digital Design”, In Proceedings
of DAC, pages 624-629, , 1992

[4] 1.S. Bonatti, and R.J.O. Figueiredo, “Stoht — An SDL-

o [oS T R

3e(2] @

Fig.7 Simulation Result of the Barcode Reader

to-Hardware Translator”, In Proceedings of ASP-DAC,
pages 33-36, 1995

[5] G.. De Micheli, “Synthesis and Optimization of Digital
Circuit”, McGraw, Inc., 1994

[6] D. Gajski, N.D. Dutt, A. Wu, and S. Lin, “High-Level
Synthesis : Introduction to Chip and System Design",
Kluwer Academic Publishers, 1992

[7] ITU-T Recommendation “Z.100; CCITT Specification
and Description Language (SDL) “, ITU-T, 1993

[8] P.R. Panda, N.D. Dutt, “1995 High Level Synthesis
Design Repository”, In Proceedings of the Eighth
International Symposium on System Synthesis, 1995

— 413 —

