Proceedings of ITC-CSCC 2000, Pusan, Korea

Asynchronous Superscalar Processor

Department of Information and Communications
Kwangju Institute of Science and Technology
1 Oryoung-dong, Puk-ku, Kwangju 500-712, Korea
Tel: +82-62-970-2248, Fax: +82-62-970-2204
E-mail: {sukjinkim, bschoi, chpark, dilee}@kjist.ac kr

The Performance Potential of Data Dependent Computation on

Suk-Jin Kim, Byung-Soo Choi, Chan-Ho Park and Dong-Ik Lee

Abstract: We investigate potential advantages and

problems when a superscalar processor is designed and
implemented using asynchronous design methods.
Conventional techniques of superscalar processing are

applied and data dependent adder is considered as an
Intensive simulations on

asynchronous component.
SPEC INT95 benchmark suites are made for the purpose

of performance comparison between a synchronous and

an asynchronous superscalar processor, respectively. The
simulation results show about 5%
asynchronous design methods in the sense of Issue Rate.

1.Introduction

Recently, a number of asynchronous microprocessors
have been proposed [1]. Since there is no global clock in
asynchronous systems, the clock skew problem is
eliminated easily. Furthermore, the average case

performance can be accomplished due to the data
dependent feature of asynchronous systems. In the scalar

architecture, however, we cannot fully enjoy the
performance advantage of asynchronous systems since

there may be situations called starvation or blocking by

the slow blocks in pipeline [2]. Figure 1 shows how two

functions are performed in a pipelined architecture with

different design methods. The arrows represent the time
consumed in each block from the instruction stream.

On the other hand, in a superscalar architecture this
is not the case that the slow operations in one block can
be overtaken by the faster operations in the other block
because they have multiple functional blocks. See Figure

2. In addition, the dependencies among instructions can
be resolved faster than a synchronous system, because it

does not need to wait until the next clock is triggered and
most operations have smaller computation time than the

worst case delay. Therefore, a superscalar processor

designed by asynchronous methods allows to operate as

Ao

- .

F2

(a) Synchronous

blocking
1 starvation
——— —_— —————
i (SN A
Fo = 2 {

(b) Asynchronous

Figure 1. The operation of a scalar processor

speedup with

time

F1

F2

(a) Synchronous

F2
(b) Asynchronous

Figure 2. The operation of a superscalar processor

fast as possible, taking advantage of delay variations due
to data dependencies. This leads to increase the
utilization of subsystems and hence improve the
performance in comparison with the synchronous
counterpart. In this paper, at the first step of developing

high performance asynchronous superscalar
microprocessor, we aim at investigating the effectiveness
of data dependent computation in superscalar
architecture.

The rest of paper is organized as follows. Section 2
discusses data dependent computation in asynchronous
systems and derives the statistics of carry chain length
from a dynamic instruction trace. Section 3 describes
modeled architecture and simulation method. Section 4
reports the results of our simulation. Finally, we draw the
conclusion and expected problems of an asynchronous
superscalar processor in Section 5.

2.Data Dependent Computation

Each stage of pipeline in synchronous systems has the
same completion time since it is bounded by the worst

.
N e
> - . . Ay
o e SR S S SUP pk) e~ SERUIE U Y
0 1 23 4 5 6 7 8 8 I I21314151617 181920212223 24252627 282930 3 32
Canry chain length

Figure 3. Carry chain length for arithmetic additions

— 414 —

—~—g0
8- gcc

~— lipeg
20

Percentage
~
it

A .
01 23 4567 8 g 1011121341518 17181920212223242526272829303132
Cany chain length

Figure 4. Carry chain length for address calculations

case delay in the slowest stage. In asynchronous systems,
however, the time consumed in each stage is not
constrained to a fixed cycle but may depend on both
types of operations and their input data. Therefore,
asynchronous systems show average case performance
instead of the worst case performance.

To find out this feature in real processing, we
investigate the 32-bit addition for SPEC INT 95
benchmark program. Figure 3 and 4 show the
distribution of maximum carry propagation chain length
for the arithmetic addition and memory address
calculation of each benchmark program, respectively.
The results indicate that the typical arithmetic addition
has carry propagation chains approximately 5 bits long
whereas those for address calculations are about 7 bits.
For address calculation, some significant extra peak lies
between 17 and 19 bits. The overall average has
propagation chain approximately 6 bits long. This feature
Is very important to make asynchronous systems increase
the performance.

3.Modeled architecture and simulation

The architecture we are considering models an out-of-
order instruction issue mechanism and speculative
execution to exploit the best instruction level parallelism.
Furthermore, we assume neither branch prediction miss
nor cache miss. Thus, only data and memory

[o
'

1 Rename ﬁg

‘ Dispatch

{ Instruction Window E
i Issue

Functional Units E

1
v

[Reorder Buffer E
‘ Commit

{ Register File E

Figure 5. Block diagram of modeled architecture

Complete

Table 1. Details of the modeled architecture

Instruction Fetch 4 instruction fetch per cycle,
no branch miss

Renaming Mapping Table and Reorder buffer
Inst}ructlon 20 entry central window
Window) ;
(Tomasulo’s algorithm[3],
(Wakeup, .
. Oldest first mechanism)
Selection)
Functional Units 2 ALUs, 1 shifter, 1 multiplier, 1
divider
FU latency ALU 1, shifter 1, multiplier 3,
divider 6, load/store 1, branch 1
32 entry load/store queue. Load can
be from matching store ahead in
Memory queue. Store execute only after all
the previous instruction have
completed
Commit 256 entry Reorder Buffer,

Infinite commit size

Dependencies are taken into account. Figure 5 shows the
block diagram of modeled architecture and their details
are listed in Table 1. The configuration and latencies of
functional units are the same as those of SuperSPARC™
[4]. To investigate data dependent computation of
asynchronous systems, we adopt a ripple carry adder and
design using dual rail coding scheme[5], while a carry
skip adder is used for a synchronous processor. The
designed adders are synthesized by SYNOPSYS using
0.6um IDEC C-631 library[6]. When input data has
random distribution, the mean latency of the
asynchronous adder is 0.6 times as long as that of the
synchronous carry skip adder. All the configuration and
latencies of processors are same except for the adder.

The cycle-base simulation based on the fixed
computation time is difficult to evaluate the performance
variation of data dependency in an asynchronous
processor. New simulation method based on Parallel
Virtual Machine(PVM)[7] is proposed. PVM consists of
tasks and the message passing primitives; the
communication mechanism between tasks in PVM is
much similar to that between blocks in asynchronous
systems. Thus, each stage in an asynchronous processor
is mapped to a task of PVM and the simulation is
undertaken as followings :

e receive the data and time information from the
previous task,

e process his own operation,

e calculate computation time of current stage and add
to the received time,

e send results and the time to the next task.

To ensure the correctness of proposed simulation method,
it was applied to synchronous superscalar processor with
fixed latencies of all blocks. Finally we had same results
to the cycle-base simulation.

4. Simulation Result

SPEC 95 benchmark suits was used to produce
instruction traces using SHADE[8] based on SPARC v.8
ISA. All benchmarks were removed in the initialization

— 415 —

Table 2. Simulation Results

Bench Sync. Async. Carry inean}; of
mark Superscalar Superscalar chain Ad}g:':r
Progra [Issue [Issue length [Sync
ms Rate} Rate] [bit] Adder = 1]
g0 1.728 1.790 4.04 0.522
gee 2.172 2.265 4.21 0.534
lisp 2.238 2.361 4.12 0.527
jpeg 1.949 2.021 8.62 0.994
H-mean 2.001 2.085 4.74 0.598

phase, then we executed about 52 million instructions.
Table 2 shows the simulation results. We investigated
issue rate without NOP instructions to evaluate the
performance. Also, each benchmark was examined the
longest carry chain in average and the latency for an
asynchronous adder. The latency of asynchronous
arithmetic addition is normalized by the latency of the
synchronous counterpart. For all benchmark programs an
asynchronous superscalar processor has better
performance than synchronous one. In case of ijpeg,
although the average latency is almost same as

synchronous, the performance is better than synchronous.

This is because instructions whose computational time is
comparatively small lead to the succeeding dependent
instructions issue quickly. The average performance gain
is approximately 5%.

5. Conclusion

In this paper, we investigated the performance
improvement of an asynchronous superscalar processor
due to the data dependent computation. The simulation
results have shown that an asynchronous superscalar
processor yields about 5% higher performance than a
synchronous one in the sense of issue rate. The
improvement is caused by: 1) data dependent addition
and hence 2) the fast result forwarding. Therefore, the
more data dependent computation blocks are designed
and implemented in an asynchronous superscalar
processor, the better performance we can obtain. In
addition, a new simulation method using PVM was
investigated for an asynchronous processor. This
simulation method is useful for the performance
evaluation in the early phase of asynchronous system
design.

However, some problems that influence the
operation of an asynchronous superscalar processor have
been identified. Tomasulo’s algorithm known as a fast
result forwarding mechanisms is hard to be implemented
efficiently due to the difficulty of broadcasting.
Furthermore, the micropipeline[9] style buffer is not
suitable to implement the instruction window, because
the position of data is unknown to the block after a block
places data on a micropipeline stage. Also, the data in the
micropipeline may be moving as a forwarding operation
is performed. These issues are left for future research.

References

[1] T. Werner and V. Akella, “Asynchronous Processor

Survey”, IEEE Computer, pp. 67-76, vol. 30, 1997

[2] P. B. Endecott, “Superscalar instruction issue in an
asynchronous microprocessor”, IEE Proceedings on
Computers and Digital Techniques, pp. 266-272, vol.
143, no. 5, 1996 ‘

[3] R. M. Tomasulo, “An Efficient Algorithm for
Exploiting Multiple Arithmetic Units”, IBM Journal,
pp- 25-33, vol. 11, 1967

[4] G Blanck and S. Kruger, “The SuperSPARC™
Microprocessor”, IEEE Compcon Proceedings, 1992

[5] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A.
Takamura, “TITAC: Design of a Quasi-Delay-
Insensitive -Microprocessor”, IEEE Design and Test
of Computers, pp. 50-53, 1994

[6] IDEC Cell Library Data Book Release 9804, 1998

[7] A. Geist, A. Beguelin, J. Dongarram, W. Jiang, and R.
Mancheck, “PVM: Parallel Virtual Machine A users’

Guide and Tutorial for Networked Parallel
Computing”, The MIT Press, Cambridge,
Massachusetts, 1994

[8] “Introduction to Shade”, Sun Microsystem

Laboratories, Inc. TR 415-960-1300, Revision A of
1/Apr/92

[9] Ivan Sutherland, “Mciropipelines”, Communications
of the ACM, pp. 720-738, vol. 6, no. 6, 1989

— 416 —

